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Abstract
The objective of this study is to provide reliable nowcasting (up to six hours) to short-range wind speed
forecasts of up to 40 hours ahead in 10 meters height for meteorological observation sites (i.e., point
forecasting). The proposed method is a data-driven approach combining artificial neural networks, ensemble
learning, and feature selection techniques. Particularly, we improve a pre-defined baseline setup using
meteorological features, pre-classification by forecasting intervals, as well as spatial and temporal related
data. This combination of methods is the so-called ZiANN (ZAMG interval artificial neural network) and it
is optimized for both nowcasting and short-range forecasts. The developed method is one of the first machine
learning based wind speed forecasts for the Austrian domain and Austrian observation sites. Heterogenous
data sources are combined to derive training data for ZiANN. In particular, we consider (1) observations
from weather stations and (2) output of one or several numerical weather prediction models. For (1), we use
data from the TAWES network in Austria, while for (2), we use the AROME, ALARO, and/or ECMWF-IFS
model interpolated for the observation site location. The model is validated by two test episodes and selected
sites in Austria. Forecasts are compared to alternative methods: a random forest approach, the persistence,
the currently operational nowcasting system INCA, the model output statistic META, and the NWP model
AROME. Our results show that ZiANN outperforms alternative models, especially in the nowcasting-range.
We conclude that machine learning techniques are suitable post-processing tools, which outperform classical
methodologies.
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1 Introduction1

Accurate, robust and computationally fast wind speed2

forecasts are needed for a wide range of applications.3

Especially sensitive applications such as load balanc-4

ing (power grid), forecasting for power trading, the esti-5

mation of snow accumulation for avalanche services, or6

optimizing routes in aviation and transport need robust7

forecasts. Here, forecast frequency and availability can8

be crucial within a very short time frame, especially for9

the nowcasting-range (i.e., up to six hours ahead). Cur-10

rently, weather forecasting is carried out using numer-11

ical weather prediction (NWP) models including their12

underlying physics, often combined for post-processing13

using classical statistical methods such as model out-14

put statistics. Forecasts provided by NWP models can15

vary in their horizontal and vertical extent and resolu-16

tion. For instance, the Austrian AROME (Seity et al.,17

2011) model covers the Greater Alpine Region (GAR)18

with a horizontal resolution of 2.5 km. Using such a high19

resolution guarantees at least to a certain extent the rep-20

resentation of local meteorological phenomena.21

∗Corresponding author: Petrina Papazek,Zentralanstalt für Meteorologie und
Geodynamik, Hohe Warte 38, 1190 Vienna, Austria, e-mail: petrina.papazek
@zamg.ac.at

However, such resolutions and reproducibility come 22

with high computational demands due to their com- 23

plex underlying physics and dynamics. Especially for 24

the nowcasting-range, the latency of NWP models with 25

their computational delay of three to four hours past 26

initialization is a drawback. To solve these issues, one 27

can combine the most recent observations with the latest 28

available NWP data. Depending on the complexity of 29

the underlying topography, we require additional post- 30

processing methods. These post-processing methods can 31

include model output statistics or quantile mapping. The 32

aim of these methods is to statistically downscale the 33

coarser NWP model forecast to a higher resolution or 34

even stations or points in a region (Glahn et al., 1972; 35

Panofsky et al., 1968; Feigenwinter et al., 2018). Fre- 36

quently, for nowcasting the persistence model proved to 37

be a skillful benchmark. 38

More recently, the development of rapid update cy- 39

cle NWP models, initialized hourly for the next e.g., 40

12-hours ahead, were developed to overcome the gap in 41

the nowcasting-range. However, also more techniques 42

of the family of artificial intelligence, particularly ma- 43

chine learning, emerged in short-range weather forecast- 44

ing. Machine learning techniques are generic methods 45

often combining various data sources for training of pre- 46

dictive and descriptive algorithms. In the case of mete- 47
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orology, one can state that they learn relationships from48

meteorological observations, spatial dependencies, and49

NWP model data, depending on the data they are fed50

with. Once fitted, machine learning algorithms are able51

to produce post-processed forecasts very fast and often52

more accurately than other post-processing methodolo-53

gies. Especially in the field of renewable energy wind54

speed and power, predictions based on artificial intelli-55

gence keep emerging and perform well for different de-56

mands.57

Ramasamy et al. (2015) used a feed-forward artifi-58

cial neural network (ANN) for daily wind speed pre-59

dictions in complex terrain showing that, for daily pre-60

dictions, an observation-based ANN already provides61

useful information. Among others, Caam et al. (2005),62

Ak et al. (2013); Ak et al. (2015), or Pelletier et al.63

(2016) use similar ANN structures and model input64

data. Often, machine learning is combined with meta-65

heuristic or pre-processing techniques such as feature66

engineering, such as by Chang (2013) and Xu et al.67

(2015). Techniques based solely on NWP data as input68

can be found, too (Díaz et al., 2015).69

Recently, Schicker et al. (2017) showed that com-70

bining NWP data and observations can improve the71

short-range wind speed forecasts when using an artificial72

neural network. Similar results are found in statistical73

post-processing of e.g., ensemble forecasts by Delle74

Monache et al. (2011); Delle Monache et al. (2013);75

Gneiting et al. (2005). Based on the results of the previ-76

ous studies and findings, we plan to evaluate the effects77

of different input data and parameters from NWP mod-78

els and observations within this study.79

While the above-mentioned studies focus solely on80

ANNs, other studies investigate data pre-processing81

techniques as an additional step before applying a ma-82

chine learning algorithm. Kusiak et al. (2009a); Kusiak83

et al. (2009b) implement a k-nearest neighbor model,84

combined with a principal component analysis and a fil-85

tering algorithm whereas Robert et al. (2013) investi-86

gate spatial relationships in the prediction. Particularly,87

Robert et al. (2013) use a general regression neural net-88

work to learn relationships between topographic fea-89

tures, observed monthly wind speeds, and spatial data90

(e.g.: terrain convexity, terrain height, slope, and expo-91

sure from the digital elevation model at different spatial92

scales). They reveal that learning these spatial relation-93

ships between topographic features and wind speed im-94

proved the accuracy of their used ANN.95

Data mining is the process of discovering patterns96

in large data-sets involving methods including spatial97

and temporal relationships. Such data mining techniques98

substantially improve the skill of our methods, partic-99

ularly utilizing spatial and temporal relationships be-100

tween the data sources. Furthermore, using k-means101

clustering for regime-dependent ANNs could improve102

forecasts as can be seen in an example for solar radia-103

tion (McCandless et al., 2016a,b).104

With the availability of more computational power,105

the usage of complex neural networks emerge in geo-106

sciences. In conjunction with machine learning algo- 107

rithms data mining techniques like clustering and fea- 108

ture engineering are often able to boost a basic machine 109

learning approach. Recent contributions range from dif- 110

ferent types of recurrent neural networks (RNN), such as 111

the mixture density RNN and an LSTM RNN by Felder 112

et al. (2010), a convolutional LSTM by Shi et al. (2015), 113

and RNNs based on a Nonlinear Autoregressive Neural 114

Network (NAR) by Chatziagorakis et al. (2014); et al. 115

(2016). Long short-term memory (LSTM) describes a 116

group of ANNs with feedback connections able to re- 117

members values over arbitrary time intervals (Hochre- 118

iter et al., 1997). Not only different types of neural 119

networks are used but also extreme learning machines 120

(Leuenberger et al., 2015; Laib et al., 2016; Li et al., 121

2016) and deep learning neural networks (Dalto et al., 122

2015) are employed. However, a more complex structure 123

such as convolutional neural networks (CNN), imply the 124

usage of larger data-sets. 125

As NWP models underly frequent change in physics, 126

data assimilation, etc., we intend to use a powerful but 127

feasible feed-forward ANN model and boost its perfor- 128

mance by data mining techniques. We develop a data- 129

driven methodology for hourly forecasts of wind speed 130

in ten meters height above ground level using a feed- 131

forward neural network. The network will be tailored to 132

the respective sites for the nowcasting (1–6 hours ahead) 133

and the short-range (up to two days ahead). A basic ver- 134

sion of the ANN enables us to evaluate the impact of dif- 135

ferent data mining techniques. As sources, we consider 136

different NWP and observation data and pre-classify the 137

data to identify relevant features, define spatial relation- 138

ships, and use temporally related training as well as fore- 139

casting episodes. To ensure the robustness of the fore- 140

casts, we setup neural network ensembles. The forecasts 141

are validated against observations of the Austrian me- 142

teorological observation system (Teilautomatische Wet- 143

terstationen, TAWES), the AROME model, a model out- 144

put statistics (META), and the Austrian nowcasting sys- 145

tem INCA (Haiden et al., 2011). 146

Our methodology represents the first approach for 147

Austria addressing wind speed forecasts by machine 148

learning techniques by utilizing Austrian TAWES data. 149

The remainder of the paper is organized as follows. 150

In Section 2 the data sources, input as well as comparing 151

models, are described. Section 3 gives an overview of 152

the experiments, the methodology and considered data- 153

driven techniques, and the reference baseline model. In 154

Section 4 we describe the results and in Section 5 we 155

draw the conclusions. 156

2 Data 157

The data used in this study are observations from the 158

Austrian TAWES network1 and NWP forecasts of the 159

Austrian AROME NWP model (Seity et al., 2011). We 160

1https://www.zamg.ac.at/cms/en/climate/meteorological-network (English)

https://www.zamg.ac.at/cms/en/climate/meteorological-network
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Figure 1: Left: Locations of the selected stations with differing altitudes. Right: Vienna topography and station groups.

select two months, one summer and one winter month161

(i.e., July 2016 and January 2017) and use a subset of162

24 out of the approx. 300 TAWES sites. The selection163

of the sites was carried out to represent the different164

Austrian climate zones (Figure 1). To evaluate the skill165

of the proposed methods, we use data of the INCA166

model and the model output statistics model META,167

which combines different sources of global and regional,168

lagged NWP models.169

2.1 Observations170

The Austrian TAWES network consists of approx. 300171

semiautomatic observation sites unevenly distributed172

over Austria. They provide meteorological parameters173

every 10 minutes measured two meters (2 m) or ten me-174

ters (10 m) above the ground – e.g., 2 m temperature (T),175

10 m wind speed (ff), 10 m wind direction (dd), surface176

pressure (p), 2 m relative humidity, precipitation, sun-177

shine duration.178

The average wind speed for the selected sites is 179

2.6 m/s with a left-censored distribution and generally 180

prevailing low wind speeds. Higher wind speeds tend to 181

occur in summer more frequently than in winter. The 182

prevailing wind direction for the selected sites is north- 183

westerly. Due to seasonal changes, particularly in the 184

distribution of wind speed and direction, it is meaning- 185

ful to select training data of the same season as test- 186

ing data. The characteristics across the sites are sub- 187

stantially different. This issue becomes particularly rel- 188

evant if artificial intelligence or statistical models inte- 189

grate several sites at once without any kind of additional 190

pre-processing. Sites located in harsh regions, such as 191

mountain tops, recurrently cause outliers, which need to 192

be fixed, as we further explain in Section 3. 193

2.2 Numeric Weather Prediction Models 194

Numeric Weather Prediction (NWP) models provide a 195

large variety of meteorological parameters not only for 196

surface or sub-surface but also in the vertical. Here, 197
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Table 1: Available NWP models.

Model Prediction horizon &
Frequency

horizontal Resolution Update frequency Used parameters

AROME
Application of Research toOperations
at MEsoscale

60 hours; hourly 2.5 × 2.5 km 3-hourly ff, dd, T, p

ALARO
Aire Limitee Adaptation/Application de
la Recherche a l’Operationnel

72 hours; hourly 4.8 × 4.8 km 6-hourly ff, dd, T, p

ECMWF IFS
European Centre for
Medium-Range Weather Forecasts
Integrated Forecasting System

> 90 hours;hourly
(up to +90 h)

9 × 9 km 12-hourly ff, dd, T, p

Met. parameters: ff: wind speed at 10 meters above ground level, dd: wind direction at 10 meters above ground level, T: air temperature
(ground level), p: surface air pressure

we retrieve only surface layer fields interpolated bi-198

linear to the TAWES sites. The surface layer fields199

correspond to meteorological parameter near the sur-200

face, particularly temperature measured at 2-meters201

and wind speed and direction (or their components)202

measured 10-meters above the ground. We use data203

of three NWP models, namely the AROME (Seity204

et al., 2011), the ALARO (Termonia et al., 2018), and205

the ECMWF IFS (ECMWF, 2016a; ECMWF, 2016b)206

model (hereafter referred to as the ECWMF model).207

AROME and ALARO are both regional non-hydrostatic208

models part of the ALADIN family, whereas ECMWF209

is a global model. AROME provides the highest reso-210

lution in Austria and in the Alpine region with 2.5 km211

and is a convection permitting model. ALARO will be212

dismissed by the end of 2019. Depending on the model,213

the NWP output is available between three to six hours214

after their initialization due to the NWP’s high computa-215

tional complexity. AROME provides eight forecast runs216

per day. In Table 1 a summary of the models is given.217

2.3 Integrated Nowcasting through218

Comprehensive Analysis – INCA219

The INCA (Integrated Nowcasting through Compre-220

hensive Analysis) model (Haiden et al., 2011) is a221

dynamical-statistical model providing gridded analyzes222

and nowcasting fields. The INCA model covers the223

whole of Austria including parts of neighboring coun-224

tries with a horizontal spatial resolution of 1 km. This225

resolution is necessary to resolve the complex topogra-226

phy of the Alps which is a large part of Austria. It is227

initialized every hour for the next 48-hours ahead.228

The INCA system combines all available observation229

data, weather radar data, topography and background230

model data (e.g., gridded forecasts for temperature, hu-231

midity, wind, precipitation amount, precipitation type,232

cloudiness, and global radiation) to produce a gridded233

analysis and forecasts. For the nowcasting-range INCA234

uses a weighted combination of most recent observa-235

tions and the model led trend of the AROME model.236

It employs classical correlation-based motion vectors 237

derived from previous consecutive analyses. After 2–6 238

forecast hours the nowcast is merged into an NWP fore- 239

cast, such as AROME. INCA provides wind speed fore- 240

casts in-between stations, however, we solely employ 241

forecasts interpolated to the selected sites for our evalu- 242

ation. More detail about INCA can be found in (Haiden 243

et al., 2011). 244

2.4 Model Output Statistics (MOS)/META 245

The META model output statistics uses the information 246

of available global and regional NWP models includ- 247

ing lagged versions. It provides weighted forecasts ac- 248

cording to the skill of the individual NWP models of the 249

recent past. Recent changes are included via the model 250

forecast bias of the latest available observations. Similar 251

to INCA, META processes the wind speed forecasts. 252

3 Methodology 253

In Figure 2 an overview of the methodology is given. 254

Pre-processing and data analysis techniques are applied 255

to the input data in order to perform feature selection. 256

3.1 Description of the experiments 257

In total ca. 350 different settings and test scenarios were 258

carried out (see Table 2 for a summary). Additionally, 259

we define two different groups of observation sites. The 260

first consists of the 24 selected TAWES sites (A24, see 261

Figure 1) whereas the second focuses on Vienna and its 262

seven sites with the main focus on the site Wien Hohe 263

Warte (Figure 1). 264

Forecasts are validated for two episodes, July 2016 265

and January 2017, using the average performance and 266

extreme events (not discussed here). Hourly forecasts 267

for the next 40 hours ahead are produced for those two 268

months. 269
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Figure 2: Overview on the methodology: data sources and feature
selection.

3.2 Feature selection and preprocessing270

Features describe the input or output of a machine learn-271

ing model. Here, these features are based on observa-272

tions and NWP model data (Sect. 2). Wind speed mea-273

sured 10 meters above the ground is the target parameter274

(denoted henceforth as f f ). Wind speed is a continuous,275

however also a highly variable meteorological quantity.276

It serves as the single output feature of all experiments.277

Wind speed and direction is driven by many param-278

eters such as topography, sunshine, surface pressure, lo-279

cal and large scale pressure differences, surface rough-280

ness, turbulence, and temperature. A careful selection281

of input data is needed to be able to reproduce past ob-282

servations in the training period. Even more so to per-283

form predictions. Here, observed wind speed ( f f ), wind284

direction (dd), 2 m above ground level air temperature285

(T ), surface pressure (p) proved to be useful input fea-286

tures (experiment not shown here). For NWP data the287

following surface level parameters are used: 2 m temper-288

ature (temperature in 2 meters above the ground), wind289

speed and direction of the 10 m wind (horizontal wind290

measured at 10 meters above the ground). Additionally,291

we consider a history of the latest available observa-292

tions, including their age (e.g., 10-minutes old). The his-293

tory length of observations is arbitrary and we chose it294

empirically through experiments. For the feature selec-295

tion of the NWP models, again, wind speed, wind di-296

rection, temperature, and surface pressure are chosen.297

Missing values in the observation or the NWP data are298

replaced using linear interpolation unless the data gap is299

too large (e.g., if there are six missing values in a row, or300

1-hour of missing data occur these records are omitted).301

An in-depth data analysis has shown that the behavior302

and relationships between the parameters vary to a very303

large extent among the stations. To better consider the304

regional differences and the effects of the topography305

for each site, location-based data-sets for each station or306

a preselected group of stations (see Section 3.4.2) were307

generated.308

Table 2: Overview on performed experiments, in total ca. 350 (ep. =
test episode, n.u. =non-uniform); (x,y) = (steps of ff+dd+T+p, steps
with only ff); MSE = mean squared error, MAE = mean absolute
error, MAPE = mean absolute percentage error, MSLE = mean
squared logarithmic error (see also Appendix A).

Set of
experiments

Tested configurations runs/ep.
(forecasts)

Baseline
(preliminary)

different ensemble interval setups,
network setups . . .

6
(8928)

Intervals and
Ensemble

ensemble: 1, 5, 10,15, 20
interval overlap/disjoint intervals:
1-sized, 2-sized, 5 n.u., 6 n.u, 8 n.u

17
(25296)

Net
Optimization

1–5 layers; 16–100 Neurons
algo: RMSProp, Adam, SGD,
Nadam, Adamax, Adagrad
obj.: MSE, MAE, MAPE, MSLE

76
(113088)

Time Series
Length

full: (1,0), (2,0), (3,0), (4,0), (5,0)
partial: (1,1), (2,1) (2,2), (1,3)

8
(11904)

Multi Model
Input

1 model: AR (AROME),
AL (ALARO), or EC (ECMWF)
2 models: AR+AL, AR+EC,
AL+EC
3 models: AR+AL+EC

9
(13392)

OBS
Features

4 param.: f f + dd + T + p
3 param.: f f + T + p, f f + dd + T
2 param.: f f + dd, f f + T , f f + p
1 param.: f f

12
(17856)

NWP
Features

4 param.: f f + dd + T + p
3 param.: f f + T + p, f f + dd + T
2 param.: f f + dd, f f + T , f f + p
1 param.: f f
projected: Δ f f , ΔT

15
(22320)

Rolling,
Fixed,
Seasonal
Model

rolling horizon: 120 d
fixed horizon: 30, 60, 90, 120, 150,
210 d
seasonal: 1, 2, 3, 4 years (ca. 3 m/a)

12
(17856)

Spatial
Grouping
Models

regions.: w1, w2, w3
method: neighborhood, grouping,
similarity
train days: 60, 120

18
(26784)

RF Model trees: 10, 50, 100, 150, 300, 500 8
(11904)

To use ANN approaches, one needs to scale the data 309

between [0,1] as the activation functions are defined to 310

work within this range and the data i.e., the parameters 311

can cover different ranges such as wind speed (0 m/s to 312

35 m/s) and temperature (max. −50 deg C to 45 deg C). 313

This normalization is also needed to unify the impact of 314

the diverse input features, i.e., meteorological parame- 315

ters, that come in very different ranges. Without normal- 316

ization, such diverse input features may impair learning 317

their significance for the output. Therefore, all neurons 318

but also all trees in the random forest use normalized 319

data. Here, the min-max normalization is used. 320
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We add time-related features to model temporal rela-321

tionships in meteorological data which is otherwise lost322

by the feed-forward ANN approach. Examples of time-323

related features are the “observation age” and “NWP324

forecast age”. The “observation age” is the time be-325

tween the predicted time and the time of the observa-326

tion record. The “NWP forecast age” gives the most re-327

cent NWP forecast’s offset to the observation. Besides,328

all input data are pre-processed. For instance, a periodic329

function transforms the data before fed into an ANN.330

In addition to features extracted from the data di-331

rectly (i.e., observations, NWP forecasts), we examine332

projected features as input features. They represent the333

changing trend of meteorological parameters. For in-334

stance, we compute the absolute difference between ad-335

jacent time-steps of the NWP forecasts for a selected336

meteorological parameter, such as the surface tempera-337

ture. These adjacent time-steps would be otherwise not338

considered in a basic ANN architecture.339

The features of the baseline model and training340

episode length are both adjustable, enabling a set of dif-341

ferent experiments. We apply a minimum of eight fea-342

tures to train the models using the previous 120 days of343

data (see the following subsections).344

3.3 Baseline model – Random Forests345

As an alternative machine learning algorithm to the pro-346

posed ANNs, we implemented a Random Forests (RFs)347

method (Ho, 1995). RFs comprise a set of decision trees348

for regression or classification. As the RF’s output is the349

mean value of individual tree outputs, an RF can be seen350

as an ensemble method.351

For this study, we configure an RF regressor for the352

same input and output features as used in the ANN353

methods, and we train and test the RF with the same354

data-set.355

The modular choice allows us to gain model flexibil-356

ity. Indeed, we can easily switch between the ANN and357

the RF approach by activating the model in the configu-358

ration.359

As the focus of this study is on the neural network360

approaches, not much model tuning was carried out for361

the RFs. We investigated different numbers of trees – the362

final setup comprises 150 trees.363

3.4 Baseline Artificial Neural Network –364

ZiANN365

Artificial neural networks (ANNs) are machine learning366

methods used to recognize patterns and solve regression367

tasks. A neural network is described by its network368

architecture, i.e., the number of layers and connections.369

They are inspired by the biological neural networks370

constituting brain structures, which involves learning by371

identifying characteristics from the processed input data372

without prior knowledge. They are based on a set of373

connected nodes, the neurons, transmitting a signal in374

between them in different layers. The layers arrange the375

Figure 3: Top: The baseline ANN structure for forecasting on target
site; xi represents normalized input features, ai additional features
(i.e. extending the history), and z the normalized output feature. The
length of the input features depends on the configuration of features
from observations and NWP models with an 8-dimensional vector
as minimal/basic setup. Bottom: The ZiANN model: feed-forward
ANNs applied on pre-classified data-sets (intervals of lead times)
combined with ensemble learning.

neurons into the input layer, the hidden layer(s), and the 376

output layer. In the simplest case, an ANN consists of 377

one input, one hidden, and one output layer. 378

In this study, we follow a supervised learning ap- 379

proach, thus we train the model by known target val- 380

ues in the output layer, which improves learning and, 381

hence, the reliability of results. In our applications we 382

define the observed wind speeds 10 meters above the 383

ground as the target values. In particular, a feed-forward 384

ANN (frequently referred to as multiple layer percep- 385

tron ANN) is used for all experiments. In Figure 3 the 386

baseline setup of the ANN is shown. Weighted arcs con- 387

nect neurons, the processing units of the feed-forward 388

ANN, to all neurons of the next layer. Each neuron ag- 389

gregates input values and generates an output value. An 390

optimization algorithm minimizes the error of the output 391

by adjusting these weights. 392

Fine-tuning of the neural network was carried out in 393

multiple steps. The input/output features, training data 394

length, and the interaction of various methods were 395

defined in intensive testing phases for all the experi- 396

ments separately. ANNs address the network optimiza- 397

tion problems by gradient descent search algorithms. 398
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Different gradient descent algorithms, such as RMSpop,399

stochastic gradient descent, and the Adam optimization400

algorithm (Kingma et al., 2014) were investigated. Re-401

sults show that the Adam algorithm performs best in402

conjunction with the mean squared error (MSE) and403

mean absolute error (MAE) as objective functions for404

minimization. Experiments on the number of hidden405

layers reveal that two layers are sufficient for most of the406

sites. The ANNs run well with medium numbers of neu-407

rons, i.e., 50–70. With more neurons, the method tends408

to overfit.409

The ANN architecture itself was defined for all fol-410

lowing experiments, based on the ANN baseline version,411

using the Adam algorithm as an optimizer, MSE as the412

objective, and two hidden layers with 64 neurons each.413

As activation functions, we use the hyperbolic tangent414

(tanh) and rectifier/rectified linear unit (relu) and a small415

learning rate.416

3.4.1 ZiANN – station based approach417

The ZiANN station based approach combines three ma-418

chine learning methods – feed-forward artificial neu-419

ral networks (ANNs), ensemble learning, and pre-420

classification by selected forecasting intervals. There-421

fore, this approach is denoted as the ZAMG interval-422

based ANN ensemble method (ZiANN, see Figure 3).423

For every selected site ZiANN is trained individu-424

ally using the data specific to the location. The ensem-425

ble learning technique addresses the robustness of the426

ZiANN. Ensemble learning refers to training multiple427

instances of ZiANN, using the same network architec-428

ture and training data but applying the randomized ini-429

tialization (Friedman et al., 2001). Randomly initial-430

ized weights serve as a starting point for the optimiza-431

tion process during the training (refined by each iteration432

of the optimization algorithm). Hence, one can consider433

ZiANN as a non-deterministic model. For the final fore-434

cast evaluation, the ensemble mean is used.435

To obtain good results for all forecasting ranges, a436

pre-classification by intervals of the lead time is ap-437

plied. Individual ZiANN sub-models address different438

forecast horizon intervals, where an interval’s length is439

independent of the neighbouring intervals. Thus, we re-440

move complex temporal relationships of the data and441

ease learning.442

However, one has to take care not to reduce the443

amount of data too much and ensure a certain amount444

of training data samples. Therefore, a minimum training445

length is needed.446

We analyze four possible interval settings (see Fig-447

ure 4): (1) uniform one sized disjoint intervals, (2) uni-448

form two sized disjoint intervals, (3) non-uniform sized449

disjoint intervals, and (4) non-uniform sized overlap-450

ping intervals. Uniform, i.e., equally sized,intervals in-451

dicate that we (1) associate each interval with one lead452

time or (2) with two lead times (i.e., 40 or 20 intervals).453

Both apply disjoint intervals, which means to use the454

Figure 4: Different methods for pre-classifying by forecast intervals
(1, 2, 3, 4) investigated in this study; Top: The pre-classification of
the training data set; Bottom: The pre-classification of the testing
data set.

same forecasting hour in training and testing data. Typ- 455

ically, relationships in nowcasting are complex and re- 456

quire many intervals in this range. Non-uniform inter- 457

vals (3) provide this flexibility to define several intervals 458

in the nowcasting-range (defined here as +1–6 hours) 459

and few in later forecasting hours. In (4), we again use 460

non-uniform intervals. However, we overlap neighbour- 461

ing non-interval bounds for the training to increase the 462

amount of training data and variance. The most success- 463

ful method proved to be the latter, (4) – therefore, only 464

those results are considered in this study. 465

3.4.2 ZiANN – spatial grouping approach 466

Taking spatial relationships and topography into account 467

generally improve forecasts, especially in complex ter- 468

rain. For instance, considering northwesterly flows, data 469

of a site upstream can provide useful information. Fur- 470

thermore, similarities between observation sites, such as 471

those along the Danube River, can be exploited to learn 472

relationships and increase the data-set length. 473

Therefore, we investigate spatial station grouping 474

methods: the (8) neighborhood, the (9) grouping, and 475

the (10) similarity method. The grouping of sites implic- 476

itly enables ZiANN to consider topography and other 477

relevant spatial features. Thereby, forecasts for moun- 478

tainous sites and sites which are challenging for ma- 479

chine learning methods can significantly improve. For 480

this study, a spatially interesting group was selected 481

manually based on knowledge of the research team. 482
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We plan to replace this method in the future by a483

novel unsupervised clustering method (student work by484

C. Pacher, 2019, publication to appear).485

For the neighborhood method (8) ZiANN learns from486

spatial neighbor stations complementing the target sta-487

tion. The model receives additional input features to in-488

tegrate information from these neighbors. We select a489

small group of stations for a target station. The grouping490

method (9) uses data of several sites in a (possibly larger)491

station group for the training. Here, ZiANN’s training492

data is composed of joined data of all stations. Still, it493

applies the same model to forecast within the chosen494

group. Thereby, the variability and amount of data in495

the training data-set increases. However, this requires496

stations within a station group to have similar behav-497

ior/characteristics. The similarity method (10) combines498

both approaches to address sites with too small training499

data-sets. Training data using their spatial neighbors ex-500

tend the pool of available data. This training data utilizes501

the neighbooring station’s input features but the target502

stations output values for generating the training data503

set. Thus, (10) exploits the relationship and similarity504

of neighboring observation sites.505

3.4.3 ZiANN – time horizon experiments506

Given the nature of meteorological data, ZiANN learns507

using recorded observations and past NWP forecasts.508

For instance, for hourly issued two-day-ahead forecasts,509

training data with at least 30 days of past observations510

are needed (see Section 4). We consider different sets of511

training data starting from 30 past days up to 210 days.512

Extending training data generally improves the forecast513

skill unless it differs too much from the testing data.514

As data analysis indicates to focus on the same season,515

i.e., periods of similar weather situations, we consider516

different temporal horizons.517

We use the three following methods: the (11) rolling518

horizon, the (12) fixed horizon, and the (13) seasonal519

method. For (11), we roll the time horizon of training520

data each day, which results in retraining ZiANN for521

every forecast day. For (12), we fix the training data522

for several forecasts. We use, for example, the same523

model to forecast for a whole month without retraining.524

For (13), we use years of data where we omit other sea-525

sons. With seasonal data, we fill the data pool by more526

useful situations for the forecast period. In experiments,527

the latter works best proving that the season is rele-528

vant for weather-related parameters. Method (12) works529

equally well as (11) and we, thus, prefer (12) hereafter530

for saving computational resources.531

4 Results and discussion532

In this study, in total ca. 350 experiments (see Table 2)533

were performed focusing on three main topics: (I) reli-534

able nowcasting and short-range forecasts of wind speed535

using machine learning, (II) implement a data-driven536

ensemble approach, and (III) apply spatial and tempo-537

ral data mining techniques to define the best forecasting538

setup.539

4.1 Feature selection results 540

Different meteorological parameters were investigated. 541

However, we reveal that for wind speed forecasts, the 542

parameters temperature (T ), air pressure (p), wind di- 543

rection (dd), and wind speed ( f f ) at the surface level 544

perform best. Other parameters did not improve the fore- 545

casts to an extent that the extra computational costs 546

would be justified. Furthermore, it turned out beneficial 547

to use the most recent with a history of past measure- 548

ments. Still, the most important parameter is the most 549

recent observed wind speed f f (see Figure 5). However, 550

using all parameters improves the forecasts even more. 551

Investigating the number of past time-steps of the ob- 552

served parameters showed that four past time-steps im- 553

proved the nowcasting already sufficiently enough even 554

though up to ten were used (not shown here). However, 555

keeping data transfer of various observations sources in 556

mind, e.g., for wind energy applications, often one does 557

not get the past ten observations within a reasonable 558

amount of transfer time. Therefore, using four past time- 559

steps, i.e., the past 30 minutes, is sufficient enough to 560

cover recent trends. 561

Having a portfolio of at least three NWP models we 562

evaluated if using data of more than one NWP model 563

improves the forecast skills of the proposed baseline 564

model (see Section 4.2). ZiANN performs best for the 565

AROME, the NWP with the highest spatial resolution. 566

The AROME model provides an average mean abso- 567

lute error (MAE) of 1.40 m/s in the investigated test 568

episodes. However, also ECMWF and ALARO show a 569

good forecast performance with an MAE of 1.68 m/s 570

and 1.30 m/s. This implies that in the case of not hav- 571

ing a convection-permitting model such as AROME, the 572

usage of the ECMWF model would be a good choice. 573

The ECMWF model, with its reduced variance due to 574

the coarser topography, most likely might simplify the 575

learning process as the fluctuations are reduced in con- 576

trast to the other models. Thus, using less training data 577

might be sufficient for the ECMWF model. However, 578

ECMWF appears to be redundant if AROME is avail- 579

able in most of our study cases. Investigating a combi- 580

nation of the three NWP models did not show any fur- 581

ther improvements. Table 3 shows the resulting scores 582

(description in Appendix A) of the NWP models and 583

INCA, an alternative statistical model. 584

4.2 ZiANN – baseline model results 585

Results of the baseline ZiANN are evaluated against ob- 586

servations, NWP model forecasts of ALARO, AROME, 587

and ECWMF, and statistic-dynamical model forecasts of 588

INCA and META. Summarizing the setting of the base- 589

line ZiANN: as input, the past two available observed 590

time-steps – as well as – NWP model surface level fore- 591

casts of wind speed, wind direction, temperature and 592

pressure for the respective lead times are used. The train- 593

ing data comprises 120 days before the first forecasting 594
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Figure 5: Selected experiments showing the influence of the meteorological parameters on the ZiANN forecasts for the skill-score of the
mean absolute error (SS-MAE) in July 2016. Top: effect of using different features ff, dd, T, p from the observations; center: effect of using
different features ff, dd, T, p of the NWP model AROME. The experiment “proj.-ff/-T” includes all used meteorological features plus the
wind speed/temperature trend. Bottom: using different NWP models and different lengths of time series of the observation(AR:AROME,
EC:ECMWF, AL:ALARO, H=2,2: two historic time-steps with all parameters ff+dd+T+p, two further time-steps with the ff parameter
only). The left column shows results for the 24 selected stations in Austria, A24, whereas the right column shows the station Wien Hohe
Warte. As reference model (referred to as “Ref. model”) we use ZiANN with a basic setting (see SS-MAE plot caption).

day. We train the baseline ZiANN with a single fore-595

cast interval (i.e., no pre-classification) and ten ensem-596

ble members.597

Evaluations of the results show that ZiANN yields an598

overall good performance for the two selected episodes599

with mean absolute error (MAE) of 1.09 m/s and root600

mean squared error (RMSE) of 1.42 m/s(baseline ver-601

sion). However, INCA and the persistence model still602

outperform the ANN for the first two forecasting hours,603

the so-called nowcasting-range, with MAE 0.97 m/s604

(ZiANN-120 d) by a reduced MAE of 0.95 m/s (INCA)605

and 0.87 m/s (persistence). Results of urban stations,606

such as Wien Hohe Warte, imply that ZiANN is still su-607

perior to NWPs within the first couple of hours (see Ta- 608

ble 5). For the remaining forecasting hours, ZiANN is 609

close to the used NWP. ZiANN generally outperforms 610

other methods in mountainous terrain like Sonnblick. 611

These results imply that one has to use a different strat- 612

egy, especially for the nowcasting-range, to be able to 613

outperform the persistence model and the two statistical 614

methods. 615

In contrast to ZiANN, the RF implementation (us- 616

ing 150 trees and the same data-set as input) performs 617

usually very good in the first forecasting hours – it 618

achieves an MAE of 0.90 m/s in the first six forecasting 619

hours whereas ZiANN (final configuration: 120 d) per- 620
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Table 3: Overall scores for July 2016: mae = mean absolute error,
corr = correlation, std = standard deviation for a subset of forecast-
ing hours. Top: Alternative models such as NWPs and the statisti-
cal model INCA; bottom: different setups of ZiANN (ZiANN-BL =
baseline version, see Section 4.2; ZiANN-120d = fixed horizon
method with 120 days of training, see Section 4.3; ZiANN-15m =
seasonal method with 15 months of data in 2013–2016, see Sec-
tion 4.5) and the RF model configured with the same data-set and
150 trees.

Alternative models

INCA ALARO AROME ECMWF
fh corr mae std corr mae std corr mae std corr mae std

0.62 0.89 1.47 0.44 1.26 1.00 0.46 1.37 1.42 0.11 1.69 1.00
2 0.53 1.03 1.50 0.43 1.27 1.01 0.46 1.37 1.42 0.11 1.69 1.01
3 0.49 1.10 1.45 0.43 1.27 1.02 0.46 1.36 1.42 0.11 1.69 1.02
4 0.48 1.16 1.45 0.43 1.28 1.02 0.46 1.36 1.43 0.11 1.69 1.02
5 0.46 1.24 1.50 0.43 1.28 1.02 0.46 1.36 1.43 0.11 1.70 1.02
6 0.44 1.35 1.59 0.43 1.29 1.02 0.46 1.36 1.43 0.11 1.70 1.02
9 0.43 1.36 1.60 0.42 1.30 1.01 0.45 1.38 1.45 0.12 1.70 1.01
12 0.43 1.37 1.61 0.42 1.30 0.98 0.45 1.39 1.46 0.13 1.68 0.98
18 0.43 1.37 1.58 0.42 1.31 0.96 0.43 1.42 1.43 0.14 1.67 0.96
24 0.42 1.37 1.57 0.41 1.31 0.98 0.44 1.40 1.41 0.13 1.69 0.98
36 0.40 1.40 1.60 0.39 1.32 0.98 0.42 1.42 1.43 0.15 1.68 0.98
40 0.40 1.40 1.60 0.40 1.31 0.97 0.41 1.43 1.42 0.13 1.68 0.97

f̄h 0.43 1.34 1.58 0.41 1.30 0.98 0.43 1.40 1.43 0.13 1.68 0.98

Proposed models

ZiANN-BL ZiANN-120d ZiANN-15m RF-150trees
(12) (13)

fh corr mae std corr mae std corr mae std corr mae std
1 0.54 0.96 0.95 0.65 0.77 1.13 0.63 0.79 0.97 0.66 0.74 1.15
2 0.52 0.98 0.94 0.58 0.86 0.99 0.57 0.83 0.93 0.58 0.83 1.08
3 0.50 0.99 0.93 0.55 0.90 0.97 0.54 0.86 0.93 0.53 0.89 1.07
4 0.49 1.01 0.93 0.53 0.92 0.93 0.54 0.89 0.94 0.49 0.94 1.08
5 0.48 1.02 0.92 0.52 0.94 0.93 0.52 0.91 0.90 0.48 0.96 1.08
6 0.47 1.03 0.92 0.51 0.94 0.89 0.52 0.92 0.91 0.46 1.02 1.14
9 0.44 1.07 0.91 0.49 0.97 0.88 0.49 0.95 0.86 0.43 1.05 1.18
12 0.44 1.08 0.89 0.48 0.99 0.94 0.46 0.96 0.85 0.43 1.14 1.34
18 0.41 1.11 0.86 0.45 1.02 0.95 0.45 0.99 0.89 0.40 1.12 1.09
24 0.40 1.09 0.83 0.47 1.00 0.91 0.44 0.97 0.82 0.40 1.11 1.09
36 0.38 1.13 0.81 0.46 1.01 0.86 0.40 1.02 0.76 0.38 1.14 1.12
40 0.36 1.14 0.81 0.44 1.01 0.85 0.38 1.05 0.76 0.36 1.20 1.16

f̄h 0.42 1.09 0.86 0.48 0.98 0.91 0.45 0.97 0.83 0.42 1.09 1.14

forms with 0.89 m/s and the persistence with 1.10 m/s.621

The ZiANN-baseline (i.e., without using intervals in the622

nowcasting-range) performs with MAE 1.00 m/s. How-623

ever, for later forecasting RF still yields good results624

with an average MAE of 1.06 m/s but ZiANN (final con-625

figuration) is still better which achieves 0.97 m/s.626

Case studies also indicate that ZiANN handles com-627

plex situations like mountain tops or events better than628

the RF (e.g., MAE of 2.03 m/s by the RF and 1.99 m/s by629

ZiANN at the Sonnblick mountain observatory). This in-630

dicates that ZiANN is the overall best choice for our ap-631

plication. Table 3 and Figure 8 show the performance of632

the baseline model along with the input models and the633

final variant for the selected stations A24. The, some-634

times, sharp bend between lead time 17 and 18 origi-635

nates in the specification of the defined forecasting in-636

tervals (see Section 3, Figure 4). This will be changed in 637

a follow up version using a smoother transition between 638

the intervals. 639

4.3 ZiANN – station based interval approach 640

In these series of experiments ZiANN is trained sep- 641

arately for every defined forecasting time-step, ev- 642

ery station and every ensemble member. We exam- 643

ine four approaches of interval splitting, described in 644

Section 3.4.1. Using the smallest possible interval size 645

for uniform intervals, i.e., for a single forecast hour, 646

generally gives the highest scores in improving the 647

results, especially in the nowcasting-range (MAE of 648

0.89 m/s and RMSE of 1.18 m/s in the forecasting hours 649

1–6). However, the observations and NWP appear to be 650

more uniformly weighted beyond the nowcasting-range 651

(+6-hours). Therefore, we decided to use a single inter- 652

val for the lead time ranging from seven to 40 hours 653

ahead. To prevent large jumps between lead times, we 654

overlap the boundaries of the intervals instead of using 655

disjoint ones. Overlapping by one or two hours performs 656

best and improves the forecasts and extends the training 657

data-sets, enabling better learning of the model. Thus, as 658

the best possible interval method, we employ the non- 659

uniform sized overlapping intervals in the final setup. 660

Preliminary forecast simulations showed that ZiANN 661

is dependent on the way it is initialized. Therefore, 662

this is tackled by applying an ensemble learning tech- 663

nique using multiple realizations of the forecast and ul- 664

timately the ensemble’s mean as deterministic forecast 665

(see Sect. 3.4.1). We determine the number of ensemble 666

members in a multi-step approach. Our findings indicate 667

that, generally, using a higher number of ensemble mem- 668

bers performs best in the nowcasting-range, while five 669

members seem to be a sufficiently large enough number 670

for later forecasting hours (hf > 6) in the short-range. 671

The method itself involves longer computational times 672

but improves reliability (see results compared to other 673

methods in Table 3 and Figure 8, ZiANN-BL: the base- 674

line version without pre-classification, ZiANN-120d: 675

best setup of the station based variant using the fixed 676

horizon training method). 677

4.4 ZiANN – spatial grouping 678

To consider spatial relations, we investigate three meth- 679

ods of spatial grouping: the (8) neighborhood, the 680

(9) grouping and (10) similarity method (details in 681

Section 3.4.2). For this part a target site was chosen, 682

namely Wien Hohe Warte (located in Vienna). In Vi- 683

enna, seven observation sites are available. They were 684

grouped, based on e.g., land-use, location, etc. into three 685

different groups: w1, w2, and w3 (Figure 1). 686

Results indicate that for the (8) neighborhood method 687

using data of w2 is performing best for the nowcasting- 688

range with an RMSE of <1.21 m/s in contrast to w1 and 689

w3 with an RMSE of <1.22 m/s and <1.25 m/s, respec- 690

tively. This can be related to the fact that the sites in w2 691
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Figure 6: Skill-score for mean absolute error (SS-MAE) for ZiANN experiments for spatial methods (8, 9) for the station Wien Hohe Warte.
Shown are results for the grouping (left, denoted G) and the neighborhood (right, denoted N) method for different lead times. wi indicates
the cluster, −xyzT the training data length in days and months. As reference model (referred to as “Ref. model”) we use ZiANN trained with
the previous 120 days of the target site only.

share characteristics of being along the Vienna forest re-692

gion and more sub-urban than the other sites. Similarly,693

as all seven Viennese sites are grouped in w1 this clus-694

ter provides good setup, too. This most likely is due to695

ZiANN giving more weight to similar sites than to oth-696

ers.697

Same conclusions can be drawn for the (9) group-698

ing method where the spatial characteristics are equally699

important. The grouping method yields good forecasts,700

especially for beyond the nowcasting-range with RMSE701

of 1.29 m/s (in total). If stations share similarities, it is702

straight forward to use a grouping.703

The (10) similarity method is a good method when704

all other methods fail due to insufficiently long training705

data. Here, we reduced the training data for Wien Hohe706

Warte and added spatially close stations – it yields a total707

RMSE of 1.34 m/s.708

Results (Figure 6) show that the neighborhood709

method performs with MAE 0.99 m/s and the group-710

ing with 0.96 m/s, both being significantly better in the711

nowcasting-range, where they reach MAE below 0.9 m/s712

in the first hours.713

Results in Table 4 show that using the neighbor-714

hood method for the nowcasting-range and the grouping715

method for stations which share similar characteristics is716

the preferred configuration for ZiANN. In complex ter-717

rain, the spatial grouping methods overpower the single-718

site data models (see the previous section). However, es-719

pecially the neighborhood method requires a sufficient720

amount of data for training (i.e., at least 120 days). Thus,721

it is crucial to take the temporal setup into account.722

Station grouping is more or less easy when knowing723

the sites and having a reduced number of sites. However,724

for more sites, one might need to use specific clustering725

methods or group stations based on climatic characteris-726

tics.727

4.5 ZiANN – time horizon experiments728

We investigate different lengths of training data and729

combinations of seasons and years. In particular, we730

evaluate three strategies (details in Section3.4.3): the731

Table 4: Results for July 2016 of ZiANN for station Wien Hohe
Warte for four different experiments, namely 120d: the fixed horizon
method (12) with 120 days, 15m: the seasonal method (13) with
15 months, N-w2-120d: the neighborhood method (8) with the w2
cluster and 120 days of training data, G-w2-120d: the grouping
method (9) with the w2 cluster and 120 days of training data. Best
performing experiment is written in bold font.

120d 15 m N-w2-120d G-w2-120d
(12) (13) (8) (9)

fh mae corr std mae corr std mae corr std mae corr std
1 0.84 0.77 1.52 0.85 0.76 1.48 0.80 0.79 1.51 0.84 0.76 1.60
2 0.89 0.76 1.38 0.94 0.73 1.28 0.88 0.78 1.45 0.92 0.75 1.40
3 0.95 0.73 1.35 0.92 0.74 1.27 0.92 0.77 1.44 0.97 0.73 1.30
4 0.97 0.72 1.28 0.94 0.72 1.24 0.94 0.75 1.38 0.99 0.72 1.22
5 0.96 0.74 1.27 0.94 0.73 1.21 0.94 0.75 1.35 0.99 0.73 1.16
6 0.96 0.74 1.32 0.93 0.74 1.22 0.95 0.74 1.32 0.94 0.74 1.30
9 0.96 0.71 1.32 0.96 0.71 1.20 0.95 0.74 1.26 0.95 0.72 1.24

12 0.96 0.72 1.33 0.95 0.72 1.23 1.00 0.71 1.31 0.95 0.73 1.30
18 1.03 0.67 1.21 0.99 0.68 1.20 1.06 0.67 1.23 1.01 0.68 1.29
24 1.00 0.66 1.16 0.97 0.68 1.15 1.03 0.67 1.17 0.96 0.69 1.16
36 1.04 0.67 1.16 1.04 0.67 1.04 1.06 0.66 1.10 1.02 0.69 1.14
40 1.11 0.64 1.21 1.07 0.65 1.04 1.10 0.65 1.09 1.06 0.66 1.11

f̄h 0.97 0.69 1.24 0.96 0.71 1.18 0.99 0.70 1.23 0.96 0.71 1.23

Table 5: MAE in case studies: Wien Hohe Warte (urban), Inns-
bruck (urban), Sonnblick (mountain observatory), Kolm Saigurn
(valley); best setup of ZiANN for the site is chosen (spatial grouping/
seasonal/120 d).

W. Hohe Warte Innsbruck Sonnblick Kolm Saigurn
fh ZiANN AR ZiANN AR ZiANN AR ZiANN AR
1 0.80 1.02 0.77 0.93 1.45 3.38 0.59 1.37
2 0.88 1.02 0.77 0.93 1.57 3.34 0.62 1.39
3 0.92 1.04 0.74 0.94 1.74 3.33 0.66 1.40
4 0.94 1.05 0.73 0.95 1.84 3.35 0.71 1.41
5 0.94 1.01 0.74 0.96 1.87 3.33 0.72 1.42
6 0.93 0.98 0.72 0.97 1.78 3.33 0.73 1.43
9 0.95 1.00 0.74 0.99 1.88 3.40 0.75 1.45

12 0.95 0.98 0.75 1.00 2.00 3.41 0.83 1.46
18 0.99 1.03 0.83 0.97 2.02 3.52 0.86 1.44
24 0.96 0.99 0.86 0.96 1.99 3.39 0.82 1.44
36 1.02 1.04 1.22 0.98 2.14 3.32 0.79 1.43
40 1.06 1.08 1.19 0.96 2.18 3.35 0.78 1.43

f̄h 0.97 1.01 0.92 0.97 1.99 3.41 0.79 1.42
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Figure 7: Skill-score for mean absolute error (SS-MAE) for ZiANN experiments of temporal methods (12, 13) – fixed horizon with different
training days and seasonal training – for selected stations in Austria (A24) in July 2016: various number of training days (left) for A24;
extension by the seasonal method (right) for A24 for different lead times. The numbers in parenthesis xxxd indicates the number of training
days and yym the number of training months. As reference model (referred to as “Ref. model”) we use ZiANN trained with the previous
120 days or 1.5 months, respectively.

Figure 8: MAE of overall best performing experiments for different lead times for (left) July 2016 and (right) January 2017. Top for the
selected 24 Austrian station and (bottom) the station Wien Hohe Warte. If the skill of an alternative model (e.g.: the PERSISTENCE or
META model) deviates to a very large instance from our methods we limit the visualized bounds of the y-axis; used abbreviations: “d” =
days, “m” = months.

(11) rolling horizon, the (12) fixed horizon method, and732

the (13) seasonal method.733

The rolling time horizon method showed a good per-734

formance (not shown here). Evaluating methods (11)735

and (12) show that both strategies scale equally well736

when using 120 days for model training. This indicates737

that the data similarity has more influence than the data738

record time being close to the prediction date. Based on 739

an internal study on wind turbine data a retraining every 740

month or two is advisable. Furthermore, method (11) has 741

a disadvantage compared to the other methods as it re- 742

quires to train the model for every initialized forecast 743

run. Thus, in operational environments, it would cost 744

additional computational overhead. Therefore, for this 745
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Figure 9: MAE for four selected stations for July 2016: (top left) Wien Hohe Warte (urban area), (bottom left) Innsbruck (urban area),
(bottom right) Sonnblick (a mountain observatory), and (top right) Kolm Saigurn (valley station next to Sonnblick observatory). If the skill
of an alternative model (e.g.: the PERSISTENCE or META model) deviates to a very large instance from our methods we limit the visualized
bounds of the y-axis; used abbreviations: “d” = days, “m” = months.

study, methods (12) and (13) were further investigated.746

Consequently, we apply the fixed horizon for all subse-747

quent experiments using a fixed number of days before748

the first day of the forecasting episode to train the model.749

Results show that for (12) the best performance750

was achieved using 120 days for training ZiANN as751

longer periods impose more seasonal changes (see Fig-752

ure 7). Through empirically testing the 120 days of train-753

ing provided the best performing forecasts for our test754

episodes although it slightly exceeds a season. Gener-755

ally, the number of days depends, too, on the availabil-756

ity of archived NWP data and data complexity. For ex-757

ample, ZiANN learns to reproduce convective events if758

the data includes them. Similar to statistical models, if759

such information is not present in the training data a760

machine learning algorithm is not able to forecast such761

events. Furthermore, such relationships are complex to762

learn and require sufficient data.763

Method (13) omits other seasons by concatenating764

similar seasons (13) from multiple years. It is able to765

outperform (12) and yields good results for complex sit-766

uations. Figure 7 (right) gives an example of the result767

of extended training data for the selected Austrian sta-768

tions A24. Figure 7 shows different settings of the fixed769

horizon and seasonal method. Table 3 includes the re-770

sults of the best setup using the seasonal method in771

column ZiANN-15 m and results on the fixed horizon772

method in column ZiANN-120d. In most cases the sea-773

sonal method outperforms the fixed horizon method of774

ZiANN. We obtain an MAE of 0.97 m/s and an RMSE 775

of 1.31 m/s. In the nowcasting-range (1–6 hours) the 776

MAE is reduced to 0.87 m/s and RMSE to 1.18 m/s. 777

4.6 Overall results 778

For the overall evaluation, we compare metrics of 779

the best-performing experiments of the afore-described 780

sub-topics against the baseline model, the statistical- 781

dynamical models INCA and META, the raw NWP fore- 782

casts, and the implemented random forest (RF) model 783

(Figure 8, Table 3). 784

For the nowcasting-range the random forest imple- 785

mentation does provide good, sometimes even better 786

forecasts compared to ZiANN. However, in the later 787

lead times, it is not able to catch up with ZiANN. Es- 788

pecially for more complex sites such as mountain sites, 789

the random forest method would need more tuning. As 790

we aim to improve the forecast skill for all lead times 791

and effectively tuned ANNs as base models, we stick to 792

ANNs. Thus, we use the proposed ZiANN model in dif- 793

ferent configuration for all following experiments. Re- 794

sults for July 2016 for selected sites (see Figure 9) also 795

show that the proposed method ZiANN is able to out- 796

perform the other methods for different topographic set- 797

tings. Figure 10 shows the distribution of the MAE of the 798

ZiANN-120d experiment between stations, in total and 799

the nowcasting range. One can observe that at mountain 800

tops (i.e., difficult situations) the forecasting quality de- 801

creases. 802
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Figure 10: Mean MAE for test cases spatial distribution:
(top) 1–40 hours, (bottom) 1–6 hours.

5 Conclusions and Outlook803

This study focusses on the development of an opti-804

mized setup for a machine learning based nowcasting805

and short-range forecasting model for wind speed. The806

idea is to develop a system using observations and NWP807

forecasts and combine them in a meaningful way using808

an artificial neural network (ANN). The implemented809

ZAMG interval Artificial Neural Network (ZiANN) in-810

cludes ensemble learning techniques, feature selection811

and considers spatial and temporal relations within the812

data. Different experiments focusing on training length,813

the grouping of several sites, and other more data min-814

ing related tests have been carried out using two target815

months, July 2016 and January 2017.816

ANNs, ensemble learning, and feature selection tech-817

niques are suitable for forecasting wind speeds. In this818

study, our proposed method includes location-based in-819

formation and takes local data for each considered site820

into account. Wind speed-related meteorological param-821

eters (e.g., wind speed, temperature) act as input features822

of the model. The skill of the model improves when ex-823

tending both the training lengths of the neural network824

as well as the amount of most recent observations. The825

latter is particularly important for nowcasting. For the826

range beyond the nowcasting-range information of the827

most recent NWP forecasts is used. Models with more828

input features, no matter if temporal, spatial or meteoro-829

logical data, are more complex and cause more compu-830

tational costs. This can result in the need for more com-831

putational resources without necessarily improving the832

forecast skill, sometimes even overfitting, i.e., negative833

effects. Likewise, using spatially high resolved NWP834

model data needs more training data to enable the neural835

network to learn the characteristics of the NWP model.836

Therefore, one should select features carefully.837

Results of the experiments show that the final setup 838

of ZiANN outperforms the raw NWP forecasts and also 839

statistical-dynamical post-processing methods such as 840

model output statistics. For the nowcasting-range, the 841

random forest model proved to be an interesting alter- 842

native or additional model for a sort of probabilistic 843

nowcasting. We have to admit, though, that besides the 844

evaluation of the number of trees no additional hyper- 845

parameter tuning was carried out for the random forest 846

model. 847

Feature selection and considering the spatial and 848

temporal relations proved to be beneficial for the results 849

of ZiANN. For all forecasting ranges, pre-classifying the 850

data-set by forecasting intervals was important. Further- 851

more, using small forecasting lead-time intervals in the 852

nowcasting-range solved the issues of giving too much 853

weight to later lead-times in ZiANN. Likewise, the over- 854

lapping intervals, i.e., for lead-time two with an interval 855

of ±1 hour, thus, including information of lead-time one 856

and three, even improved the results. Additional bene- 857

fits are that one is able to cover time-shifts in the NWP 858

model as well as increasing the training data-set. 859

We significantly outperform other methods by the 860

station-based approach. ZiANN yields an MAE of 861

0.97 m/s where INCA gives 1.34 m/s and AROME 862

1.40 m/s on average for the investigated test episode and 863

location. Even the RF implementation provides an MAE 864

of 1.06 m/s. In the nowcasting-range, we obtain an MAE 865

smaller than 0.95 m/s. By the neigborhood method, we 866

surpass the baseline version of the test site of MAE 867

0.93 m/s by MAE 0.90 m/s. The seasonal method boosts 868

the results of ZiANN by 0.92 m/s. 869

This proves that the method is well suited for our test 870

region and a feasible approach for the nowcasting-range, 871

too. 872

In this study, we showed that basic measures for tun- 873

ing a neural network model for wind speed forecast- 874

ing already yields good results. Our method is already 875

part of a semi-operational predicting method in Aus- 876

tria using all TAWES sits and yields a good forecast 877

quality (i.e., outperforming other models such as INCA, 878

AROME, and the persistence). We successfully applied 879

it to data from wind farms in order to give wind speed 880

and power predictions at hub height. Thus, we consider 881

the ZiANN as a robust and efficient forecasting method 882

for the wind speed. However, there are still open topics 883

and issues which need to be tackled to further improve 884

ZiANN. As sites upstream of the current wind direc- 885

tion provide valuable information one could, thus, use a 886

weather dependent grouping or unsupervised clustering 887

method. Also, the tuning of hyper-parameters could still 888

be investigated more deeply by e.g., automatized param- 889

eter tuning methods. Limitations of ZiANN are to solely 890

give wind speed predictions for single locations, not for 891

longer prediction horizons than the short-range, relying 892

on sufficient quality checked inputs. In this study, we 893

could only investigate the forecast skill of ZiANN for 894

the described time episodes and set of observation sites. 895
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A Statistical Scores for Deterministic896

Wind Speed Forecasts897

The following scores are used for evaluation, with vobs898

being the true value of wind speed (ground truth),899

vmod the predicted value, and n the total number of tested900

samples:901

Mean: a measure for the expected value E[X]:902

v̄ =

n∑

i=1

vi. (A.1)

Mean squared error (MSE): provides the average903

squared error (i.e., the deviation of the prediction904

model vmod from the observation vobs) with905

MSE =
1
n

∑
(vobs − v̂mod)2. (A.2)

Root mean squared error (RMSE): square root of the906

MSE, i.e.:907

rmse =

√
1
n

∑
(vobs − v̂mod)2. (A.3)

BIAS: is defined as the difference between the mean of908

the model and the mean of the true values, i.e.:909

BIAS = v̄mod − v̄obs. (A.4)

Mean absolute error: average absolute difference be-910

tween the model and the true values, i.e.:911

MAE =
1
n

∑
|vobs − v̂mod|. (A.5)

Standard deviation (STD): measures the variation of a912

random variable X and single sample xi, i.e.:913

STD(X) =

√√
1

n − 1

n∑

i=1

(xi − x̄)2. (A.6)

We use STD(vmod).914

Covariance (COV): is the joint variability of two ran-915

dom variables X, Y , to measure whether high values916

of one variable correspond with high variables of the917

other variable while low values also correspond,918

cov(X, Y) = E[(X − E[X])(Y − E[Y])]. (A.7)

Here, we evaluate COV(vobs, vmod).919

Pearson correlation coefficient (CORR): a normalized920

version of cov showing the strength of a linear rela-921

tion, i.e.:922

CORR =
cov(vmod, vobs)

std(vmod)std(vobs)
. (A.8)

Skill Score (SS): evaluates the forecast vmod against 923

another available reference forecast vref: 924

SS =
Score(vmod) − Score(vref)

Score(perfect) − Score(vref)
(A.9)

Score(perfect) is the best value of the used score 925

(such as MAE = 0 m/s). Score(perfect) is zero for 926

many scores listed above, which simplifies the com- 927

putation of S S . 928

References 929

Ak, R., Y.F. Li, V. Vitelli, E. Zio, 2013: A genetic algorithm 930

and neural network technique for predicting wind power under 931

uncertainty. – In: Prognostics and System Health Management 932

Conference PHM-2013, 1–6. 933

Ak, R., V. Vitelli, E. Zio, 2015: An interval-valued neural 934

network approach for uncertainty quantification in short-term 935

wind speed prediction. – IEEE Transactions on Neural Net- 936

works and Learning Systems 26, 2787–2800, DOI: 10.1109/ 937

TNNLS.2015.2396933. 938

Caam, E., E. Arcakliogul, A. Caavusogul, B. Akbiyik, 939

2005: A classification mechanism for determining average 940

wind speed and power in several regions of turkey using ar- 941

tificial neural networks. – Renewable Energy 30, 227–239. 942

Chang, W.-Y, 2013: Short-term wind power forecasting us- 943

ing the enhanced particle swarm optimization based hybrid 944

method. – Energies 6, 4879–4896. 945

Chatziagorakis, P., C. Elmasides, G.C. Sirakoulis, I. Kara- 946

fyllidis, I. Andreadis, N. Georgoulas, D. Giaouris, 947

A.I. Papadopoulos, C. Ziogou, D. Ipsakis, others, 2014: 948

Application of neural networks solar radiation prediction for 949

hybrid renewable energy systems. – In: International Con- 950

ference on Engineering Applications of Neural Networks, 951

Springer, 133–144. 952

Chatziagorakis, P., C. Ziogou, C. Elmasides, G.C. Sirak- 953

oulis, I. Karafyllidis, I. Andreadis, N. Georgoulas, 954

D. Giaouris, A.I. Papadopoulos, D. Ipsakis, others, 2016: 955

Enhancement of hybrid renewable energy systems control 956

with neural networks applied to weather forecasting: the case 957

of olvio. – Neural Comput. Appl. 27, 1093–1118. 958

Dalto, M., J. Matuško, M. Vašak, 2015: Deep neural net- 959

works for ultra-short-term wind forecasting. – In: Industrial 960

Technology (ICIT), 2015 IEEE International Conference on, 961

1657–1663. IEEE. 962

Delle Monache, L., T. Nipen, Y. Liu, G. Roux, R. Stull, 963

2011: Kalman filter and analog schemes to postprocess numer- 964

ical weather predictions. – Mon. Wea. Rev. 139, 3554–3570, 965

DOI: 10.1175/2011MWR3653.1. 966

Delle Monache, L., F.A. Eckel, D.L. Rife, B. Nagarajan, 967

K. Searight, 2013: Probabilistic weather prediction with an 968

analog ensemble. – Mon. Wea. Rev. 141, 3498–3516, DOI: 969

10.1175/MWR-D-12-00281.1. 970

Díaz, D., A. Torres, J.R. Dorronsoro, 2015: Deep neural 971

networks for wind energy prediction. – In: I. Rojas, G. Joya, 972

A. Catala (Eds.): Advances in Computational Intelligence, 973

Cham. Springer International Publishing, 430–443. 974

ECMWF, 2016a: Part III: Dynamics and numerical procedures. – 975

In: IFS Documentation CY41R2, number 3 in IFS Documen- 976

tation. 977

ECMWF, 2016b: Part IV: Physical processes. – In: IFS Docu- 978

mentation CY41R2, number 4 in IFS Documentation. 979

Feigenwinter, S.I., Kotlarski, A. Casanueva, A.M. Fis- 980

cher, C. Schwierz, M.A. Liniger, 2018: Exploring quantile 981

mapping as a tool to produce user-tailored climate scenarios 982

for Switzerland. – Technical Report MeteoSwiss 11, 10. 983

http://dx.doi.org/10.1109/TNNLS.2015.2396933
http://dx.doi.org/10.1175/2011MWR3653.1
http://dx.doi.org/10.1175/MWR-D-12-00281.1


Unc
or

re
ct

ed
 p

ro
of

16 P. Papazek et al.: Feature selection/ensemble learning/ANNs for wind speed forecasts Meteorol. Z. (Contrib. Atm. Sci.)
PrePub Article, 2020

Felder, M., A. Kaifel, A. Graves, 2010: Wind power predic-984

tion using mixture density recurrent neural networks. – In:985

Poster Presentation at European Wind Energy Conference,986

working paper.987

Friedman, T.J. and Hastie, R. Tibshirani, 2001: The elements988

of statistical learning, volume 1. – Springer series in statistics989

New York, NY, USA.990

Glahn, H.R., D.A. Lowry, 1972: The use of Model991

Output Statistics (MOS) in objective weather forecast-992

ing. – J. Appl. Meteor. 11, 1203–1211, DOI: 10.1175/993

1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.994

Gneiting, A.E.T. and Raftery, A.H. Westveld, T. Gold-995

man, 2005: Calibrated probabilistic forecasting using ensem-996

ble model output statistics and minimum crps estimation. –997

Mon. Wea. Rev. 133, 1098–1118, DOI: 10.1175/MWR2904.1.998

Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica,999

C. Gruber, 2011: The Integrated Nowcasting through Com-1000

prehensive Analysis (INCA) system and its validation over1001

the eastern alpine region. – Wea. Forecast. 26, 166–183, DOI:1002

10.1175/2010WAF2222451.1.1003

Ho, T.K., 1995: Random decision forests. – In: Proceed-1004

ings of 3rd International Conference on Document Analy-1005

sis and Recognition, volume 1, 278–282. DOI: 10.1109/1006

ICDAR.1995.598994.1007

Hochreiter, S., J. Schmidhuber, 1997: Long short-term mem-1008

ory. – Neural Computation 9, 1735–1780, DOI: 10.1162/1009

neco.1997.9.8.1735.1010

Kingma, D.P., J. Ba, 2014: Adam: A method for stochastic1011

optimization.1012

Kusiak, A., H. Zheng, Z. Song, 2009a: Short-term prediction1013

of wind farm power: A data mining approach. – IEEE Trans-1014

actions on Energy Conversion 24, 125–136.1015

Kusiak, A., H. Zheng, Z. Song, 2009b: Wind farm power pre-1016

diction: a data-mining approach. – Wind Energy 12, 275–293,1017

DOI: 10.1002/we.295.1018

Laib, M., M. Kanevski, 2016: Analysis and modelling of ex-1019

treme wind speed distributions in complex mountainous re-1020

gions. – In: EGU General Assembly Conference Abstracts,1021

volume 18, 3338.1022

Leuenberger, M., M. Kanevski, 2015: Extreme learning ma-1023

chines for spatial environmental data. – Comput. Geosci. 85,1024

64–73.1025

Li, Z., L. Ye, Y. Zhao, X. Song, J. Teng, J. Jin, 2016: Short-term1026

wind power prediction based on extreme learning machine1027

with error correction. – Protection and Control of Modern1028

Power Systems 1, 1–8.1029

McCandless, T.C., S. Haupt, G. Young, 2016a: A regime- 1030

dependent artificial neural network technique for short-range 1031

solar irradiance forecasting. – Renew. Energy 89, 351–359. 1032

McCandless, T.C., G.S. Young, S.E. Haupt, L.M. Hinkel- 1033

man, 2016b: Regime-dependent short-range solar irradiance 1034

forecasting. – J. Appl. Meteor. Climatol. 55, 1599–1613, DOI: 1035

10.1175/JAMC-D-15-0354.1. 1036

Panofsky, H.A., G.W. Brier, 1968: Some applications of statis- 1037

tics to meteorology. – University Park: Penn. State University, 1038

College of Earth and Mineral Sciences. 1039

Pelletier, F., C. Masson, A. Tahan, 2016: Wind turbine power 1040

curve modelling using artificial neural network. – Renew. 1041

Energy 89, 207 – 214. 1042

Ramasamy, P., S. Chandel, A.K. Yadav, 2015: Wind speed 1043

prediction in the mountainous region of india using an artifi- 1044

cial neural network model. – Ren. Energy 80, 338–347, DOI: 1045

10.1016/j.renene.2015.02.034. 1046

Robert, S., L. Foresti, M. Kanevski, 2013: Spatial predic- 1047

tion of monthly wind speeds in complex terrain with adap- 1048

tive general regression neural networks. – Int.J. Climatol. 33, 1049

1793–1804, DOI: 10.1002/joc.3550. 1050

Schicker, I., P. Papazek, A. Kann, Y. Wang, 2017: Short- 1051

range wind speed predictions for complex terrain using an 1052

interval-artificial neural network. – Energy Procedia 125, 1053

199 – 206, DOI: 10.1016/j.egypro.2017.08.182. 1054

Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bnard, 1055

F. Bouttier, C. Lac, V. Masson, 2011: The AROME-france 1056

convective-scale operational model. – Mon. Wea. Rev. 139, 1057

976–991. 1058

Shi, X., Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, W. Woo, 1059

2015: Convolutional LSTM network: A machine learning ap- 1060

proach for precipitation nowcasting. – CoRR abs/1506.04214. 1061

Termonia, P., C. Fischer, E. Bazile, F. Bouyssel, 1062

R. Brožková, P. Bénard, B. Bochenek, D. Degrauwe, 1063

M. Derková, R. El Khatib, R. Hamdi, J. Mašek, P. Pot- 1064

tier, N. Pristov, Y. Seity, P. Smolíková, O. Španiel, 1065

M. Tudor, Y. Wang, C. Wittmann, A. Joly, 2018: The 1066

ALADIN System and its canonical model configurations 1067

AROME CY41T1 and ALARO CY40T1. – Geosci. Model 1068

Develop. 11, 257–281, DOI: 10.5194/gmd-11-257-2018. 1069

Xu, X., D. Niu, t. Fu, H. Xia, H. Wu, 2015: A multi time scale 1070

wind power forecasting model of a chaotic echo state network 1071

based on a hybrid algorithm of particle swarm optimization 1072

and tabu search. – Energies 8, 12317. 1073

http://dx.doi.org/10.1175/1520-0450(1972)011%3C1203:TUOMOS%3E2.0.CO;2
http://dx.doi.org/10.1175/MWR2904.1
http://dx.doi.org/10.1175/2010WAF2222451.1
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1002/we.295
http://dx.doi.org/10.1175/JAMC-D-15-0354.1
http://dx.doi.org/10.1016/j.renene.2015.02.034
http://dx.doi.org/10.1002/joc.3550
http://dx.doi.org/10.1016/j.egypro.2017.08.182
http://dx.doi.org/10.5194/gmd-11-257-2018



