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Abstract
The main goal of this study is to assess the performance of the analog-based
post-processing method applied to the Austrian ALADIN-LAEF wind speed
ensemble predictions through a set of sensitivity experiments. Evaluation of
several analog-based configurations using various meteorological variables as
predictors is therefore conducted. The results of those experiments are compared
to the ensemble model output statistics (EMOS) baseline model. The hypothe-
sis further investigated is that using summarized measures, such as mean and
standard deviation of an ensemble for several meteorological variables, is com-
parable to the analog post-processing using all of the ensemble members. Results
show that both analog-based and EMOS experiments considerably improve the
raw model forecast. Even though the improvement over raw model forecast is
evident, large differences among nearby stations are noticed in the highly com-
plex terrain. The processes at lower stations seem to be better represented by
the raw model, which leads to a better input forecast to the post-processing
and a better overall result than for the mountain stations. The analog-based
method is overall comparable to or even outperforms the EMOS. Assessing the
post-processing performance for high wind speeds shows that the analog exper-
iments can improve the raw forecast, exhibiting significantly higher skill than
the EMOS. The difference among all analog experiments is less pronounced,
especially the experiment using all of the raw model ensemble members and the
one using summarized measures. Furthermore, it is demonstrated that the usage
of summarized ensemble measures is an optimal way to improve the forecast
skill, compared to the other analog-based experiments and the EMOS model.
Therefore, it is suggested that it is not necessary to increase the computational
costs by using the full input spectrum of a raw probabilistic model, that is, all
ALADIN-LAEF members as predictors, as the summarized metric suffices.
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1 INTRODUCTION: THE
ANALOGIES AS A PART OF A
WEATHER PREDICTION SYSTEM

Analogies between, for example, similar past forecasts,
measurements or analyses as a potentially useful tool
for forecasting the future state of the weather have been
explored for decades, in both positive and pessimistic
ways. Lorenz (1969) and Rousteenoja (1988), for instance,
claimed that one needs to wait an astronomical number of
years until the likelihood of finding two atmospheric states
that differ less than the present-day observational error
is sufficiently high enough to be considered as usable.
Back then, the applicability of analogues for short-range
weather forecasting was discarded. Even so, Van den Dool
(1989) showed that if the number of degrees of freedom in
the matching procedure is reduced, finding suitable analo-
gies is possible. In contrast to Lorenz (1969) who searched
the entire Northern Hemisphere, Van den Dool (1989)
used data centred over a localized area for the analogue
search.

In the past, a set of different analogue search proce-
dures was defined. This was done mainly because the use
of analogues for forecasting of meteorological fields is lim-
ited due to excessive degrees of freedom of the problem
at stake. Xavier and Goswami (2007) used the National
Oceanic and Atmospheric Administration (NOAA)'s out-
going long-wave radiation fields for long-range weather
predictions, whereas Panziera et al. (2011) performed
very short-term orographic precipitation predictions using
radar observations. Besides single fields, the use of spa-
tially correlated observational variables (Wu et al., 2012)
also proved to be suitable. Satisfactory results were also
achieved for the Southern Oscillation Index (SOI) fore-
casts using SOI measurements (Drosdowsky, 1994), point
wind-speed forecasts using wind speed measurements
(Klausner et al., 2009), for idealized cases with low-order
models (Ren and Chou, 2006), and general-circulation
modelling (Gao et al., 2006; Ren and Chou, 2007).

As a very successful continuation of the aforemen-
tioned studies, Delle Monache et al. (2011) proposed two
deterministic analog-based post-processing methods using
historical data that includes both observations and numer-
ical weather prediction (NWP) data. They applied the ana-
log method to a single site to improve 10 m wind-speed
deterministic NWP forecasts. In contrast to a recursive
and linear Kalman filter post-processing approach (KF),
the deterministic approaches using analogs both had
a higher correlation and lower random and systematic
error than the KF method (Delle Monache et al., 2006;
2008; 2011). Similar approaches were used for predict-
ing other variables, such as PM2.5 (fine particulate mat-
ter) concentrations (Djalalova et al., 2015), or even across

several models and meteorological variables (Nagarajan
et al., 2015).

Van den Dool (1989) revealed that analogues can be
used to predict the forecast skill of an NWP model. Hamill
et al. (2006) and Hopson (2005) extended the idea and
applied the analogues to ensemble forecasts. Hamill and
Whitaker (2006) stated that, when comparing the pattern
match of the historical local ensemble-mean forecast to
the current ensemble-mean forecast in the same region,
it is possible to find many similar and useful analogues
within a few decades of reforecasts. Their study focused on
probabilistic forecasts of 24 hr precipitation. All the afore-
mentioned analogue-techniques were able to improve the
Brier skill score, resulting in a skill comparable to a logistic
regression technique. The authors, while comparing dif-
ferent analogue-techniques, also concluded that selecting
analogues for each member rather than for the ensem-
ble mean generally decreased the forecast skill. Another
successful example of a calibrating ensemble forecast can
be found in Hopson and Webster (2010). The authors
sought analogues to generate the final set of discharge
ensembles accounting for all aspects of discharge forecast
uncertainty (meteorological and hydrological). This part
of the fully automated operational 1–10-day multi-model
ensemble forecasting scheme for the major river basins of
Bangladesh helped to evacuate many thousands of people
and livestock during flood events in 2007.

Delle Monache et al. (2013) applied the analog ensem-
ble (AnEn) approach to produce probabilistic 10 m wind
speed and 2 m temperature forecasts using only one
deterministic NWP model as input. They showed that the
AnEn exhibits high statistical consistency and reliabil-
ity. Similarly, Vanvyve et al. (2015) provided high-quality
long-term wind resource estimates. The probabilistic
analog-based predictions were also successfully used to
gain wind resource estimates (Vanvyve et al., 2015; Zhang
et al., 2015), to predict solar irradiance (Alessandrini et al.,
2015a), wind power (Alessandrini et al., 2015b; Junk et al.,
2015), downscale precipitation (Keller et al., 2017) and
10 m wind speed (Sperati et al., 2017).

Additional to using a deterministic NWP to create
AnEn (as described in Delle Monache et al., 2011; 2013),
the same approach could also be applied using an NWP
ensemble. The AnEn ability to capture the flow-dependent
error growth would be complemented with the aspects of
error growth that could be represented dynamically by the
multiple model runs of an NWP ensemble. Following that
idea, Eckel and Delle Monache (2016) produced m analogs
for each member of the n-member NWP ensemble, result-
ing in an m×n “hybrid” analog ensemble. The approach
yielded mixed results for 10 m wind speed forecasts,
while the application for the 2 m temperature forecast
was more successful. Mugume et al. (2017), who used
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the analog approach to post-process ensemble members
who use different convection parametrization schemes,
also explored the same idea. The authors demonstrated
a root-mean-square error (RMSE) and bias reduction in
rainfall prediction when using corresponding predictions
of the (starting) ensemble mean analog as a forecast.
Slightly better results (e.g. significant reduction of nega-
tive bias error) were achieved when seeking the analog for
every (starting) ensemble member and then averaging the
analogs.

In this study we propose an in-depth analysis of dif-
ferent analog-based configurations applied to the Austrian
ALADIN-LAEF ensemble forecasts. Following the work of
Eckel and Delle Monache (2016) and Mugume et al. (2017),
the main goal of this study is to significantly improve
the ALADIN-LAEF ensemble 10 m wind speed forecast
while maintaining low computational cost for the ana-
log search. To test the performance of the analog-based
post-processing and determine the optimal configuration,
several experiments using different sources of informa-
tion available to the ALADIN-LAEF ensemble forecasts
are performed. The experiments include using one or
more ALADIN-LAEF meteorological variables as predic-
tors. Through performed analysis, the experiments includ-
ing only information about the ALADIN-LAEF ensemble
mean (as suggested by Hamill and Whitaker, 2006) or every
ensemble member (similar to Mugume et al., 2017) are also
tested. A novelty in this study is the usage of the starting
model ensemble uncertainty through its standard devia-
tion (𝜎) in addition to ensemble mean (𝜇). The hypothesis
additionally explored in this study is that using a sum-
marized measure, as 𝜎, is the optimal way to dynamically
represent the aspects of error growth of the input ensem-
ble model to the flow-dependent error growth, which is
already captured by the analog approach. This hypoth-
esis is investigated and evaluated against other experi-
ments using 29 meteorological observation sites (TAWES)
in Austria for a winter (January) and summer (July)
month of 2018. The ensemble model output statistics

post-processing approach (EMOS: Gneiting et al., 2005) is
used as a reference model in order to better understand
the analog-search impact on the raw forecasts. All experi-
ments provide a 17-member wind-speed analog ensemble
forecast, as well as the ALADIN-LAEF forecast.

In Section 2 the data are described, while Section 3
introduces the post-processing methods used and explains
the experimental set-up in detail. The results are presented
in Section 4 and conclusions are highlighted in Section 5.

2 DATA

2.1 Observations and climatology

The Austrian meteorological observation network,
TAWES, consists of more than 300 sites across Austria.
In this work, 29 TAWES sites are used representing the
different Austrian climate zones. All sites monitor tem-
perature, wind speed and direction, relative humidity,
pressure, precipitation, and, depending on the site, differ-
ent radiation measurements are carried out. Here, only 10
m wind speed observations are used. The 2015 and 2016
wind speed observations are used for the analog-based
method training period in this study. For the performance
testing, two target months are chosen, January and July
2018. These months are selected to investigate the fore-
cast performance during winter and summer periods. The
January and July 2017 wind speed observations are used
for independent sensitivity testing (weight optimization).

The observed average monthly wind speed is slightly
higher in January (2.88 m⋅s−1) than in July (2.22 m⋅s−1),
across all available stations and lead-times. Additionally,
the standard deviation of the wind speed measurements
is also higher on average in January (3.27 m⋅s−1) than in
July (1.92 m⋅s−1).

The wind speed is weak and moderate (i.e. <8 m⋅s−1)
for both January (Figure 1a) and July (Figure 1b) at the
majority of the stations. The average monthly wind speed

F I G U R E 1 The spatial distribution of the observed monthly mean wind speed in (a) January and (b) July, 2018. The arrows mark
mountain stations for later comparison
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T A B L E 1 The summary information for the experiments tested in this work

Name
Meteorological
variables used ALADIN-LAEF input (predictors)

No. of analog
searches per lead-time

LAEFws ws X X

EMOSws ws Ensemble 𝜇 and 𝜎 for one parameter, wind speed (2 predic-
tors)

X

EMOSstd ws, dir, t2m, rh, p, prec Ensemble 𝜇 and 𝜎 for six parameters (12 predictors) X

AnEnCtrl ws, dir, t2m, rh, p, prec Control ensemble member for six parameters (6 predictors) 1

AnEnWs ws 17 ensemble wind speed members (17 predictors) 1

AnEnMu ws, dir, t2m, rh, p, prec Ensemble 𝜇 for six parameters (6 predictors) 1

AnEnStd ws, dir, t2m, rh, p, prec Ensemble 𝜇 and 𝜎 for 6 parameters (12 predictors) 1

AnEnAll ws, dir, t2m, rh, p, prec 17 ensemble members for 6 parameters (6× 17 predictors) 1

AnEnMem ws, dir, t2m, rh, p, prec 1 ensemble member for every parameter (6 predictors) 17

increases towards the northeastern part of Austria (Pan-
nonian basin) for both January and July. Exceptions are
the three mountain stations (arrows in Figure 1), where
the average wind speeds are much higher if compared to
the neighbouring valley stations.

Most of the stations are located in or near the Alps,
which significantly modulates the related local wind
regimes. The complex terrain of the Alpine area is char-
acterized by a variety of different wind processes such as
föhn and downslope windstorms, gap winds, valley, and
slope winds, flow blocking and others. To investigate those
phenomena, among others, the Alpine region has been
the target area for several major field experiments, such as
ALPEX, MAP and TEAMx (e.g. Kuettner, 1986; Bougeault
et al., 2001; Lehner and Rotach, 2018; Serafin et al., 2018).
Nevertheless, many challenges related to NWP in complex
terrain still exist (e.g. Arnold et al., 2012), including mod-
elling wind climatology of the Alpine areas prone to such
downslope windstorms (Horvath et al., 2011) and objective
föhn wind classification (e.g. Mayr et al., 2018).

2.2 Model data

The numerical model used in this study is the
ALADIN-LAEF (Wang et al., 2011) ensemble forecast-
ing system. It is adjusted to fit Austrian purposes and
has been running in operational mode since 2013. The
ALADIN-LAEF consists of 17 ensemble members: 16
perturbed members and one control run. The 16 per-
turbed members are driven by 16 European Centre for
Medium-range Weather Forecasts Ensemble Prediction
System (ECMWF-EPS) members. Given the structure and
composition of the LAEF ensemble, it can be considered
as a non-exchangeable ensemble. However, as could be
shown by Baran and Lerch (2015), the differences between

the treatment of a non-exchangeable ensemble as fully
exchangeable did not worsen the results to a statistically
relevant size. Therefore, we decided to treat the LAEF
ensemble as exchangeable. The resolution of 10.9 km on
a Lambert conformal grid is used in the horizontal. In the
vertical, 45 terrain-following pressure-based hybrid coor-
dinate levels with on average nine levels within the lowest
1,000 m above ground level are used. It is initialized daily at
0000 and 1200 UTC with one hourly lead-time, up to 72 hr.
Only the dataset corresponding to the model run initial-
ized at 0000 UTC is used in this work. A pre-selected subset
of six ALADIN-LAEF parameters (temperature (t2m),
wind speed (ws) and direction (dir), relative humidity (rh),
pressure (p) and precipitation (prec)) is used in different
combinations (summarized in Table 1). The datasets cor-
respond to the previously mentioned observation datasets.
The 2-year long dataset (2015–2016) is used for training.
The 2-month period (January and July 2017) is used for
weight optimization. Finally, the results are given for the
independent dataset consisting of January and July 2018.

3 METHOD

3.1 Reference method

To assess the performance of the proposed analog ensem-
ble methods, a reference is needed. The reference in this
article is the ensemble model output statistics (EMOS).
The EMOS is introduced by Gneiting et al. (2005) and
adapted for wind by Messner et al. (2014). Therefore,
a non-homogeneous regression with a 30-day rolling
training window is fitted on every lead-time and station.
To capture the natural boundary of wind at 0 m⋅s−1, a
left-censored logistic regression is used. In the EMOS
the observed wind speed (y) is explained by a logistic
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distribution censored at 0 (0) with 𝜇 as a mean and 𝜎 as a
spread. A logistic distribution has a similar bell shape as a
Gaussian distribution but with slightly heavier tails. Addi-
tionally, censoring at zero states that no negative wind
values can occur. Further details can be found in Messner
et al. (2014). Censoring and the linear regressions for 𝜇

and 𝜎 are defined as follows:

wind speed =
{

0 if y ≤ 0
y else, (1)

y ∼ 0(𝜇, 𝜎), (2)

𝜇 = 𝛽0 + 𝛽1 𝑤𝑠𝜇, (3)

log(𝜎) = 𝛾0 + 𝛾1 log(𝑤𝑠𝜎), (4)

with 𝛽* and 𝛾* as regression coefficients, ws𝜇 as ensem-
ble mean, and ws𝜎 as ensemble spread of the wind speed
members. The logarithmic link function is used to ensure
positive values. Further applications of the EMOS to
wind speed can be found in Thorarinsdottir and Gneiting
(2010), Baran and Lerch (2015) or Scheuerer and Möller
(2015).

The 30-day rolling training window is used for the
EMOSws experiment, making it a good reference for
the analog experiment that uses only the raw model
wind-speed data. However, since the other analog exper-
iments use all available variables, a second reference is
added. The second experiment (EMOSstd) uses all avail-
able variables. The boosting method of Messner et al.
(2017), which is implemented in the R-package “crch”,
is applied to all variables and the whole dataset, instead
of the rolling training window. Additionally, annual and
biannual harmonic functions are added to capture a sea-
sonal bias. A variable selection method, such as boosting,
is needed to prevent overfitting. The boosting is able to
choose the most important variables and exclude the
other variables using zero value. As a result, a single fit
per station and lead time can be used to forecast both test
months.

Concluding, whereas the EMOSws only uses the last
30 days as training and only the wind speed as an input, the
EMOSstd uses all available training data and all variables
including seasonal functions.

3.2 The analog ensemble method

The probability distribution f (y| xf) of the observed future
value of a variable y at a given time and location can be
estimated by the analog ensemble (AnEn) using xf repre-
senting k predictor variables from the starting (determin-
istic or ensemble) model prediction xf = (x1

f , x2
f , … , xk

f ).

The AnEn method uses historical point-based data within
a specified analog training period for which both the
starting model and the verifying observation are available.
The so-called analogs (best-matching historical forecasts
to the current prediction) may originate in any past date
in the training period. The assumption is that the error of
the good (quality) analog is likely to be similar to the error
of the current forecast (Delle Monache et al., 2011). As
proposed in Delle Monache et al. (2013), the quality of the
analog is evaluated by the following metric (Equation 1):

||FtAt′ || = NA∑
i=1

wi

𝜎fi

√√√√√ t̃∑
j=−̃t

(Fi,t+j − Ai,t′+j)2, (5)

where Ft is the current NWP forecast at a given location,
valid at the future time t. The At′ is an analog at a given
location with the same forecast lead-time, but valid at a
past time t'. The NA represents the number of predictor
variables used in the analog search and wi are the weights
corresponding to a particular predictor. The absolute value
of the metric is not important as such since it is only used
for the intercomparison of analogs when used for sorting
of the distances. Therefore, the weights are not constrained
(i.e. their sum does not need to be fixed). For the fair
comparison between different meteorological parameters,
however, the weights wi are normalized using the standard
deviation, 𝜎fi, of the time series of past forecasts of a given
variable at the same location. The t̃ is equal to half of the
time window width over which the metric is computed,
therefore Fi,t+j and Ai,t'+j are the values of the forecast and
the analog in the time window for a given variable, respec-
tively. The time window is used to account for shifts and/or
trends in the starting model forecast. The analog search
is independent for every forecast time and location while
limited around a particular time of day by a time window
width. The width used in this work is 2 hr, including the±1
lead time step, as proposed by Delle Monache et al. (2013).
The number of degrees of freedom in the analog-finding
procedure is therefore reduced (as proposed in Van den
Dool, 1989). The members of the AnEn are verifying obser-
vations of the best-matching analogs. Once the AnEn
is formed, it can be used to produce the determinis-
tic analog-based prediction (e.g. forecasting AnEn mean
value), as well as the probabilistic forecast (e.g. to estimate
the probability of a predefined event). Several authors state
that the AnEn rank histograms are uniform (e.g. Delle
Monache et al., 2013). Therefore, every member of the
AnEn is an equally probable outcome, even though, mea-
sured by previously defined metrics, some analogs are
closer to the current forecast than the others are.

Instead of assigning the same importance to each pre-
dictor variable, the brute-force weight optimization can
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F I G U R E 2 The histogram of the
optimized weights for each predictor tested, at 29
stations in Austria (January and July 2017). (a)
The predictors include wind direction (dir),
temperature (t2), relative humidity (rh), pressure
(p), and precipitation (prec). (b) The standard
deviation predictor is calculated as one
multiplying factor for several meteorological
parameters

increase the AnEn performance. This is demonstrated in
several applications, such as Junk et al. (2015) and Alessan-
drini et al. (2015a). The weights' optimization is based on
choosing the combination that minimizes the error (mea-
sured by the continuous rank probability score). Due to the
limited computational resources, not all the possible com-
binations are tested in this work. The forward selection
algorithm is used instead, starting with weight value fixed
at 1 for wind speed parameter. Then, one by one (ensemble
mean) predictor is added from a pre-selected subset of six
ALADIN-LAEF parameters, in the following order: dir,
t2, rh, p and prec (as listed in Section 2.2). The weights are
optimized independently at each location by error mini-
mization. The forward selection algorithm is computation-
ally less demanding than testing all the possible combina-
tions independently at each location. However, it needs to
be noted that the algorithm makes a key assumption that
is often not true – assuming that all predictors are inde-
pendent of each other, which is generally not the case.
Five possible weight values (0.00, 0.25, 0.50, 0.75 and 1.00)
are investigated for January and July 2017. Therefore, the
optimization procedure uses a completely independent
dataset from the period when training, as well as when
forecasting is performed. The results show that the wind
direction is the most important predictor in addition to
wind speed (Figure 2). It is followed by temperature and
relative humidity parameters, which carry more weight,
especially in the more complex terrain, such as the Alpine
area (not shown). The pressure and precipitation param-
eters are often optimized with the 0.00 weight, meaning
that they are not carrying additional benefits at certain
stations. But that is not always the case. For instance,
the precipitation parameter often is optimized by weight
value 1, mostly at the southeastern side of the Alpine
area, where convective precipitation often occurs (not
shown).

Supplementary to using the mean value of 17
ALADIN-LAEF ensemble members for each meteorologi-
cal parameter, the standard deviation of those 17 members
can also be used as an additional predictor. Thus, the
information on the starting model ensemble uncertainty
is included in the analog search. The standard deviation

predictors are optimized as one multiplying factor to all
the pre-calculated weights for meteorological parame-
ters, independently for each location. Five possible values
of this multiplying factor are tested: 0.2, 0.4, 0.6, 0.8
and 1.0. If using none of the values results in a forecast
improvement, the value 0.0 is used as the best fit. In the
following illustrative example, it is assumed that the opti-
mal weight for the ALADIN-LAEF temperature ensemble
mean predictor is 0.75 at a particular location. Similarly,
the weight for the relative humidity is optimized as 0.50,
for precipitation as 0.00, etc. Then, the weight for the
six ALADIN-LAEF ensemble standard deviation predic-
tors is optimized as 0.2. The wi in Equation 4 would be
0.2× 0.75 for the temperature standard deviation predic-
tor, 0.2× 0.50 for the relative humidity standard deviation
predictor, 0.2× 0.00 for the precipitation, etc. The distri-
bution for the optimized standard deviation multiplying
factors is given in Figure 2. The result shows that the opti-
mal contribution of the standard deviation predictors is
about 40% of the ensemble mean predictors' contribution
to the majority locations tested.

The AnEn can be affected by a conditional negative
bias, especially when predicting events in the right tail
of the forecast distribution. For that reason, a novel bias
correction method is applied, as proposed by Alessandrini
et al. (2019). The method is based on a correction factor
proportional to the linear regression coefficient between
the wind speed observations and raw model forecast (i.e.
ALADIN-LAEF wind speed ensemble mean) during train-
ing, as well as to the distance between the current raw
model forecast and the average value of the previous raw
model forecasts that correspond to the currently selected
analogs in the AnEn. The lead-time-independent correc-
tion factor is added to all the members of the AnEn if
the current raw model forecast is above a certain thresh-
old value. If the threshold is set too low, the bias cor-
rection adjustment can become small and noisy, lead-
ing to forecast performance degradation. After the simple
AnEn testing (minimizing the RMSE; not shown), the
95th percentile of the climatological raw model forecast
distribution (during the training period) is chosen as a
threshold in this work.
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3.3 Description of experiments

In total, six different input configurations using the obser-
vations and the ALADIN-LAEF ensemble data are inves-
tigated in this study. All six investigated configurations
provide an analog ensemble forecast consisting of the
past observation corresponding to the 17 most similar
past ALADIN-LAEF ensemble predictions. Thus, the new
analog-based ensemble forecast provides the 17 ensem-
ble members, equivalent to the original ALADIN-LAEF
model. The chosen ensemble size does not only reflect the
input NWP ensemble but is close to the optimal size of 15
members for the deterministic application of the analog
ensemble found by Odak Plenković et al. (2018).

Dabernig et al. (2015) show the value of an ensem-
ble forecast compared to its deterministic control run.
Therefore, the first experiment, the AnEnCtrl, uses the
ALADIN-LAEF control member for the six meteorolog-
ical parameters available as six predictors. The AnEnWs
uses all 17 ALADIN-LAEF ensemble member wind speed
predictions (LAEFws) as 17 predictors. More meteorolog-
ical variables are exploited in the AnEnMu experiment.
In contrast to the AnEnWs, in the AnEnMu experiment,
only the ensemble mean 𝜇 for every parameter is used
as a predictor. For the AnEnStd ensemble forecasts, the
ALADIN-LAEF ensemble uncertainty (𝜎) and the ensem-
ble mean (𝜇) of the defined six meteorological parame-
ters are used. The AnEnStd includes the aspects of error
growth, represented dynamically by the ensemble model
used, as explained in Eckel and Delle Monache (2016).
This adds additional information to the flow-dependent
error growth already captured by the analog approach (e.g.
in AnEnMu).

In addition to the aforementioned experiments, two
diverging ways of including all the ALADIN-LAEF infor-
mation available are investigated. The first additional
experiment, the AnEnAll, uses every member of the
ALADIN-LAEF ensemble for every defined meteorologi-
cal predictor. Thus, in this study, 6 variables and 17 ensem-
ble members are used, which equals 6× 17 predictors. An
important goal of this study is to evaluate if all probabilis-
tic information is needed or summary measures, such as
mean or spread, are already sufficient. The second addi-
tional experiment is the “member by member” approach
AnEnMem. Here, the analog search procedure is carried
out for every ALADIN-LAEF member separately. There-
fore, each raw model member is now distinguishable from
the others. The analog-search procedure is independently
done for each set of six pre-defined meteorological param-
eters, corresponding to the same raw model member. Thus,
in our study, the search procedure is performed 17 times in
total. Only one analog is chosen in every analog search pro-
cedure per ensemble member, with verifying observation

chosen as the member in the AnEnMem ensemble. This is
the most demanding configuration presented in this study.
An analog experiment similar to the AnEnMem experi-
ment, but using more than one analog (e.g. five analogs)
for each of the ALADIN-LAEF ensemble members, is also
investigated. However, besides being even more computa-
tionally demanding, it did not provide any benefits justi-
fying the additional computational costs. Therefore, these
results are not shown here.

All experiments use an analog search time window
fixed at every lead-time individually, including one time
step before/after to account for a trend and produce a
17-member ensemble output.

To determine if the difference in scores between the
experiments is statistically significant, the moving-block
bootstrap technique, following the procedure of Wilks
(1997) and using 1,000 re-samples at a confidence level
of 95%, was applied, except for correlation where pair
bootstrap technique was used (Wilcox, 2009; see his
section 4.2).

The forecast performance of the different experiments
is evaluated in the following section.

4 RESULTS

4.1 Overall results

In total, six different analog-based ensemble experiments
(see Table 1 for a summary) are carried out in this study.
Results are evaluated against observations, the raw ensem-
ble model, the ALADIN-LAEF (LAEFws) and the varia-
tions of the EMOS forecasts. The novelty of this approach
is the usage of different types and set-ups of the probabilis-
tic input model to give new insights into the analog-based
methodology. Summarizing, all analog forecasts show an
improvement compared to the raw forecasts (Table 2).
Moreover, most analog forecasts perform similar or even
better than the EMOS methods. Furthermore, distinct dif-
ferences between the analog configurations are found.

The source of error of a model can be specified when
decomposing the RMSE to the bias of the mean (or simply
bias), the bias of the standard deviation (𝜎 bias) and the
dispersion (phase) error (e.g. Murphy, 1988; Horvath et al.,
2012):

RMSE2 = (F − O)2 + (𝜎f − 𝜎o)2 + 2𝜎f𝜎o(1 − rfo), (6)

where F represents forecast, O observations, 𝜎f is the stan-
dard deviation of the forecast F, 𝜎o is the standard devia-
tion of observations O, and r is the correlation coefficient
between the forecast and observed data; all referring to the
same period (i.e. month). In this work, the 𝜎 bias is defined
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as the bias of the standard deviation of the ensemble mean
(regardless of the ensemble spread).

Results show that the average bias of the LAEFws
ensemble is small, underestimating the wind speed by
0.21 m⋅s−1 in January and 0.23 m⋅s−1 in July. The same
results are found for the 𝜎 bias in July with 0.77 m⋅s−1,
while it is a slightly more dominant source of error in Jan-
uary with −1.50 m⋅s−1. Also, the other evaluated scores
such as the correlation coefficient (CC), which is on aver-
age higher in July than in January with 0.37, or the RMSE
with 3.07 m⋅s−1 in January and 1.79 m⋅s−1 in July, indicate
that the LAEFws, in general, has realistic results, espe-
cially for the summer month. However, there are still some
unresolved processes, as can be seen by the results of the
dispersion error.

The main aim of any kind of the NWP model
post-processing is improving the results of the orig-
inal model. This is the case here, too. The EMOS
post-processing experiments are applied successfully,
reducing all three error sources: the bias, the 𝜎 bias and the
dispersion error in comparison to LAEFws. The EMOSws
is more successful in removing a systematic source of the
error, while the EMOSstd is better at removing the disper-
sion error. All six analog-based experiments are able to out-
perform the LAEFws as well. Specifically, they can reduce
all three error sources for the ensemble mean. Already the
first and most “simple” experiments in terms of input data,
the AnEnCtrl and the AnEnWs, successfully remove the
systematic errors in the bias and𝜎 bias similar to the EMOS
approach. Even more successful in removing the pre-
dominant dispersion source are the experiments with the
additional predictors: AnEnMu, AnEnStd and AnEnAll.

In addition to improving the results for the ensemble
mean, the average ensemble spread matches the aver-
age RMSE better after any post-processing. The AnEn-
Std exhibits the best spread among analog-based exper-
iments in July, while AnEnAll shows better results in
January. This might be related to the fact that wind
speed shows greater variability (higher standard devia-
tion of observations) and is probably harder to predict
correctly in January. For that reason, using more infor-
mation from the raw model adds more variety to the
ensemble members. This result also indicates that in the
convective season most likely a horizontally and vertically
higher-resolved convection-permitting NWP model might
add some additional information not present in the coarser
LAEFws.

The Brier Skill Score (BSS) is a commonly used met-
ric for the probabilistic forecast of a binary event that
uses climatology as a reference (Jolliffe and Stephenson,
2011; Wilks, 2011). It is calculated using the following
expression:

𝐵𝑆𝑆 = 1 − 𝐵𝑆∕𝐵𝑆clim, (7)

where the Brier score (BS =
∑

i(pi − oi)2/n) averages the
squared differences between pairs of forecast probabili-
ties p and the subsequent binary observations o over all n
forecast–observation pairs.

A binary event is defined using an exceedance thresh-
old, that is, of wind speed forecasted higher than 5 m⋅s−1.
The closer the BSS is to the perfect number 1, the better the
skill of the forecast is. Here, a threshold of 5 m⋅s−1 is cho-
sen for the BSS as it is reasonably high while, on the other
hand, not being too rare. In the selected two months, the
observed frequency of the wind speed exceeding 5 m⋅s−1

is higher for January with 18% cases than for July with
9%. Based on these observed numbers, the BSS value of
the original ensemble (LAEFws) is −0.08 for January and
0.03 for July, indicating that the small differences are
already present in the input data. It is shown that the
BSS is improved by all post-processing experiments. This
is especially the case in January, where the underlying
climatology shows that the higher wind speed is more
frequently observed than in July and the wind speed vari-
ance (higher standard deviation of observations) is higher.
The AnEnMu, AnEnStd and AnEnAll experiments show
a nearly similar improvement. The other post-processing
approaches improve BSS less.

The continuous rank probability score (CRPS) is a sum-
mary metric that can be interpreted as the integral of
the Brier score over all possible threshold values for the
parameter under consideration:

CRPS = ∫
∞

−∞
[Pf (x) − Po(x)]2 𝑑𝑥, (8)

where Pf stands for forecasted probability (cumulative dis-
tribution), while Po is a cumulative-probability step func-
tion that jumps from 0 to 1 at the point where the forecast
variable equals the observation. The CRPS is a negatively
oriented (the lower, the better) accuracy measure that is
equivalent to the mean absolute error for deterministic
forecast and also has a value of 0 for the perfect forecast.
The LAEFws shows a higher CRPS (1.63 m⋅s−1) for Jan-
uary than for July (1.03 m⋅s−1). Again, the CRPS value is
improved by all post-processing experiments, exhibiting
better overall results for July than in January, when wind
speed and its variance is higher on average. Similar to
the BSS, the AnEnAll shows the highest skill during the
winter month, while the AnEnStd is slightly better dur-
ing the summer month. This indicates that adding more
input from the raw model does not just increase the ensem-
ble spread, but it also improves its accuracy. The AnEnMu
follows both AnEnAll and AnEnStd results closely. The
other post-processing experiments are not as successful
(see Table 2), exhibiting significantly worse overall results
for both months investigated.
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F I G U R E 3 Continuous rank
probability score (CRPS) depending
on lead-time for five different
analog-based ensemble
experiments during (a) January and
(b) July 2018 at all stations tested in
this study. The markers are set for
the results significantly different
from the AnEnStd forecast (95%
confidence level), while the red
shaded area represents the
AnEnStd 95% confidence interval
calculated by bootstrap percentile
method (Jolliffe, 2007)

4.2 Lead-time performance

To investigate six analog-based ensemble experiments
comparison further, a summary score CRPS is consid-
ered for the individual lead-times (Figure 3). The result
shows that there is no significant difference between
the AnEnMu, AnEnStd and AnEnAll performance dur-
ing either winter or summer month. The AnEnCtrl,
AnEnWs and AnEnMem are slightly outperformed by
other analog-based experiments, especially for January.
Even though the AnEnCtrl, AnEnWs, and AnEnMem are
able to improve the raw NWP forecasts, comparable to
the EMOS approach, they are less promising than other
analog-based experiments. The AnEnWs results show
that it is essential to use more than one meteorological
variable as a predictor in the analog approach. This can
be explained by the better ability of the analog method
to distinguish different seasonal and synoptic situations.
The analog-search pool in the AnEnMem experiment is
smaller than in other analog experiments since the search
is performed dependently for the same ensemble member.
Possibly, that is why the AnEnMem would not increase
the skill of the raw probabilistic input, as one would
inherit undesirable properties of the input model, such as
under-dispersion and lower-resolution issues. Addition-
ally, AnEnMem is the most computationally expensive
set-up. For these reasons, it is not shown or discussed fur-
ther in this article. Finally, even though the AnEnCtrl and
the AnEnMu use the same number of the meteorological
parameters as predictor variables, the AnEnMu performs
better for both months and at all lead times tested. Simi-
lar results are shown in Dabernig et al. (2015), where the
EMOS results based on ensemble forecasts outperformed
the forecasts using only the control run.

Overall, the AnEnAll performs the best in
post-processing for January whereas the AnEnStd set-up
performs the best for July. Similar can be concluded using
additional metrics, such as BSS, reliability, spread-skill

and relative operating characteristic (ROC) diagram (not
shown). Among these experiments with a similar result,
the AnEnStd is chosen as the best representative. The rea-
son for this decision is that it is not as computationally
demanding as the AnEnAll, while it includes the informa-
tion about raw model spread (unlike the AnEnMu). The
information about the raw model error growth is consid-
ered a very important aspect of the raw NWP ensemble
forecast. Therefore, it is expected to be further developed
in the near future, leading to greater differences between
the AnEnMu and AnEnStd experiments. To determine
if using summarized predictors, such as in the AnEnStd
experiment, leads to information loss and decreases the
forecast quality, the results are compared to the AnEnAll
experiment.

In addition to overall comparison, the AnEnStd
and AnEnAll experiments are also compared against
the two different EMOS experiments and the LAE-
Fws, separated into lead-times using several verification
metrics.

The CRPS shows that the LAEFws exhibits a higher
skill during daytime (i.e. 0600–1800 UTC) than during
night-time, and higher during July (Figure 4b) than dur-
ing January (Figure 4a). The EMOS and the analog-based
experiments are more skilful during night-time than dur-
ing daytime. The improvement over the LAEFws after
post-processing is greater in January for both the EMOS
and the analog approach since the LAEFws is worse than in
July. However, the EMOS and the analog experiments are
overall better in July, when the LAEFws, which also served
as input, is better. These results imply that the best result is
achieved when the input model is also working better. The
AnEnStd and AnEnAll show almost no difference. They
are both more skilful than the two EMOS experiments.
Even though the differences are often subtle, they are sig-
nificant for the EMOSws at almost all lead-times during
January and at several lead-times during July, especially
within the first 24 hr.
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F I G U R E 4 (a and b)
Continuous rank probability score,
(c and d) the correlation coefficient
for the ensemble mean and (e and f)
the spread-skill diagram depending
on lead-time for the raw LAEFws
ensemble, the EMOS and two
different analog ensemble
configurations at all the stations
tested for January (left) and July
(right) 2018. The markers are set for
the results significantly different
from the AnEnStd forecast (95%
confidence level), while the red
shaded area represents the AnEnStd
95% confidence interval calculated
by bootstrap percentile method
(Jolliffe, 2007)

Evaluating the dependency on the lead-time, the ana-
log post-processing methods show considerable improve-
ment over the LAEFws for both months tested with the CC
(Figure 4c,d). The analog approach outperforms the EMOS
methods in terms of correlation, often significantly. This is
especially the case for January when the CC enlargement
over EMOSws is significant for almost all lead-times and
sometimes even over EMOSstd (i.e. during night-time).

The analog-based forecasts significantly reduce the
LAEFws RMSE at all lead-times (Figure 4e,f), similarly to
the EMOS approach, with very few significant differences.
The improvement is the most evident for the LAEFws
RMSE maxima at 0000 UTC.

Similar results can be found in the spread-skill dia-
grams. These diagrams test if the average ensemble spread
matches the average RMSE, representing the forecast

uncertainty appropriately. All post-processing methods
satisfactorily increase the spread. Here, both analog-based
forecasts are showing an almost perfect agreement
between the RMSE and the spread, while the EMOS
experiments are slightly under-dispersive, especially the
EMOSws in January (Figure 4e). This can be related to the
fact that it uses only the wind speed as a predictor and most
likely, not enough dispersion information is given. Addi-
tionally, the EMOSws only uses a 30-day training window,
which also results in a small under-dispersion.

4.3 Spatial performance

The climatology in Figure 1 shows that the wind
speed increases towards the northeastern part of Austria
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F I G U R E 5 The spatial distribution of the monthly mean continuous rank probability score for (a) the raw LAEFws and (b) the
AnEnStd, for January 2018. The arrows point to closely situated stations in the highly complex terrain, whereas the valley stations exhibit
much better results than the mountain stations

(Pannonian plain) for both January and July, which also
suggests a spatial pattern in forecast performance. Within
this subsection, it is decided to show only results for Jan-
uary since the previous results suggested the better distinc-
tion in the performance after post-processing. Even though
not shown here, the spatial distribution of results for July
is very similar to the ones for January.

Additionally, due to very subtle and hardly noticeable
differences among analog experiments, only the AnEn-
Std configuration is shown as a representative. The results
for the AnEnMu and the AnEnAll experiments are almost
indistinguishable from the AnEnStd, while the AnEnCtrl,
AnEnWs and the AnEnMem are the same or slightly worse.
Since the results for these experiments carry no new infor-
mation within this subsection, they are not shown from
this moment on.

The value for the LAEFws monthly mean CRPS fol-
lows the climatological wind speed pattern, having higher
values at the stations prone to higher winds. The error
is reduced for the analog experiments (Figure 5b) com-
pared to the LAEFws (Figure 5a), following a similar
pattern. Additionally, there are large differences for the
nearby stations situated in highly complex terrain. The
mapped CRPS values for any forecast tested show that
the valley stations are better predicted than the mountain
stations (arrows). The plains are better represented by the
ALADIN-LAEF topography and, therefore, the perfor-
mance of ALADIN-LAEF is, in general, better at lower
altitudes and less complex terrain. This results in the
LAEFws not being as successful at the mountain stations.
A close look at the two stations in Innsbruck (arrow in
the west of Austria) shows, for example, that the AnEn-
Std CRPS at the valley station is improved by around 20%
compared to the LAEFws. As the LAEFws performance
at mountain stations is not as efficient, this leaves room
for improvement. Here, the CRPS can be improved by
around 70% at for example, Patscherkofel, the mountain
station close to Innsbruck. A similar pattern is shown at
the station Sonnblick (arrow in the middle) where the

mountain station has much higher CRPS values (raw
and post-processed) compared to the valley station. As
an example, for the three sites located in the Semmering
region (most eastern arrow), a mountain pass in the east of
Austria, the different settings of the sites can be one of the
factors. The site located at the pass is prone to gap flows
(e.g. Mayr et al., 2007), whereas the site at the mountain-
top is located within the skiing resort, somewhat shielded
by the nearby hut and not represented in the model lower
boundary conditions. The site located in the valley shows
again the lower CRPS values. These differences in pre-
dictability are mainly related to the high wind speeds and
the coarse resolution of the raw model. This suggests a
large sensitivity of the models in the Alpine complex ter-
rain to the exact details of the mountain height and shape,
as well as the incoming background layer, where subtle
differences can result in a large range of responses in the
downslope wind regime. In contrast, the stations in the
northeast of Austria (around Vienna) are also climatolog-
ically prone to high wind speeds but show much better
CRPS values.

In order to evaluate the performance for valley and
mountain stations, the stations marked with arrows
(Figures 1 and 5) are investigated separately. For the val-
ley stations, the RMSE (1.50 m⋅s−1) shows that the LAEFws
wind speed prediction performs adequately. However, for
mountainous sites, the RMSE is 6.24 m⋅s−1, due to the
aforementioned reasons. The RMSE is notably reduced
by the analog approach, by 0.45 m⋅s−1 in the valley and
by 3.33 m⋅s−1 at mountain stations. The RMSE decom-
position (Figure 6) shows that the dispersion error is
notably reduced by the analog approach, slightly more for
the mountain than the valley sites. The LAEFws exhibits
much larger systematic errors for the mountain than the
valley stations. The LAEFws bias and the 𝜎 bias at the
valley stations are very small, to begin with. The analog
approach is therefore not able to make a large difference
after post-processing. On the other hand, the LAEFws sys-
tematic sources of error at the mountain stations are much
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F I G U R E 6 The AnEnStd and the LAEFws forecasts
performance comparison at mountain and valley stations by
root-mean-square error (RMSE) decomposition into bias, 𝜎 bias and
dispersion error during January 2018

more pronounced than at the valley stations. These sources
of error are yet again successfully removed by the analog
approach. The RMSE reduction is therefore much more
noticeable for the mountain stations than for the valley
stations, due to the reduction of systematic sources of
error, which are not as present in the raw model for the
valley stations. However, the spatial distribution of fore-
cast performance could be further investigated in future
work.

4.4 Special diagrams: Reliability, ROC
and rank histograms

The reliability of a probabilistic forecast is the property of
that forecast to predict probabilities that match the rela-
tive frequencies within the data. Here, it is evaluated for
the probability of wind speed exceedance of >5 m⋅s−1.
Again, the LAEFws ensemble has lower reliability in Jan-
uary (Figure 7a) than in July (Figure 7b). Furthermore,
it is below the no-skill line for the high probabilities in
January. Both EMOS experiments improve LAEFws reli-
ability, EMOSstd improving a bit more than EMOSws.
However, the analog experiments show an even higher res-
olution and reliability across all experiments, especially for
the winter month. The differences can be noticed for the
probabilities up to a 50% chance of wind speed to exceed
5 m⋅s−1, where the EMOSstd is slightly underconfident, or
for the probabilities with a more than 40% chance, where
the EMOSws is slightly overconfident. Between the analog
experiments, only small and insignificant differences are
found. Both analog-based experiments exhibit almost per-
fect reliability for the winter month, while being slightly
overconfident during summer.

Besides a higher resolution of the analog experiments,
one can notice that the sharpness diagram (upper-left
corner of the reliability diagram) is reasonable for all

approaches. However, the LAEFws is a bit sharper than the
post-processing experiments, indicating a higher tendency
to forecast extreme probabilities. This is preferable because
of the better forecast usability if the forecasts are reliable.
Still, the post-processing experiments are overall more
accurate in terms of reliability.

The ROC curve shows a ratio of hit rate versus
false-alarm rate using a pre-defined threshold. Again, the
threshold of 5 m⋅s−1 is used. The ROC curve (Figure 7c,d)
indicates that the analog methods, in general, improve the
raw LAEFws forecasts comparable to or better than the
EMOS. Unlike other measures, the reliability and discrim-
ination property exhibit higher values for January than for
July. However, this might be due to the higher climato-
logical frequency of such wind speeds in January (18%)
than in July (9%). For that reason, the differences among
winter and summer months should not be investigated by
using the fixed threshold. The results should be used for
comparison among different experiments. The AnEnStd
exhibits a slightly higher hit rate than the AnEnAll and
EMOS experiments, especially for July.

Evaluating the rank histogram (Figure 8), a clear
under-dispersion of LAEFws is found, especially for Jan-
uary. This is not the case for the post-processed forecasts.
It shows that the analog method is able to improve the
dispersion of the original NWP ensemble.

Finally, it is shown that the analog approach outper-
forms the raw LAEFws model in terms of better accuracy,
reliability, resolution, discrimination and spread for both
winter and summer months. The results are very simi-
lar to or better than the EMOS experiments shown, with
the larger differences during the winter month. The differ-
ence among analog experiments (AnEnAll and AnEnStd)
is barely notable. Therefore, it is indicated that using the
summarized metrics of the raw model meteorological vari-
able ensemble as a predictor in the analog approach barely
sacrifices the forecast quality, while saving computational
power.

4.5 High wind speed predictions

The majority of measured wind speed values during the
selected months are within 2–3 m⋅s−1 range (30–40%),
while wind speeds higher than 5 or 10 m⋅s−1 are rare
(Figure 9c,d). However, it is still important to properly
forecast higher wind speeds because of their higher impact
on people, damage to property, road and air traffic disrup-
tions, wind energy production, etc. For this reason, it is
important that a probabilistic forecast is consistently good
for several different thresholds. Besides the exceedance of
5 m⋅s−1 the thresholds ranging from 0.5 to 20 m⋅s−1 are
investigated (Figure 9a,b).
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(a) (b)

(c) (d)

F I G U R E 7 Reliability
diagrams and relative operating
characteristic (ROC) diagrams for
two different analog forecasts and a
threshold of >5 m⋅s−1, compared to
the raw LAEFws and the EMOS
during (a) January and (b) July 2018
at all stations tested in this study.
The dashed lines in the reliability
diagrams show 95% confidence
interval, while the sharpness
diagrams are shown in the
upper-left corners

F I G U R E 8 Rank histograms
for the AnEnStd and AnEnAll
forecasts compared to the raw
ALADIN-LAEF LAEFws and EMOS
forecasts during (a) January and (b)
July 2018 at all stations tested in
this study

The BSS indicates that the LAEFws forecast is some-
what skilful in reproducing wind speeds of the order
of 3 m⋅s−1, but shows much less skill, if any, for the
higher and lower thresholds. The EMOS approach is more
skilful than the LAEFws for any threshold value in Jan-
uary and up to 10 m⋅s−1 (EMOSws) or even 15 m⋅s−1

(EMOSstd) in July. The analog experiments are able
to improve the forecast skills up to 10 m⋅s−1 signifi-
cantly better than the EMOS experiments. Approaches
as in Baran and Lerch (2015) could be used to adjust
EMOS to higher wind speeds but have not been tried.

Furthermore, the AnEnStd and AnEnAll improve the
LAEFws forecasts for all thresholds investigated for Jan-
uary. Again, the AnEnCtrl, AnEnWs and AnEnMem do
improve the LAEFws forecasts but are less skilful than
the other analog experiments (not shown). However,
AnEnWs still provides a good result. It is, thus, the rec-
ommended approach if only a reduced set of ensemble
data is available or the computational resources are lim-
ited. These results reveal the potential for post-processing
using the analog approach, even though one needs to
be careful with the interpretation since the number of
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F I G U R E 9 (a and b) Brier skill
score and (c and d) relative frequency
depending on a wind speed threshold.
The analog probabilistic forecasts are
compared to the raw LAEFws and the
EMOS forecasts during January (left)
and July (right) 2018 at all stations tested
in this study. The markers are set for the
BSS results significantly different from
the AnEnStd forecast (95% confidence
level)

occurrences of high wind speed (i.e. around 20 m⋅s−1) is
very small.

5 SUMMARY AND CONCLUSIONS

In this study, the analog method is applied for the sites
in Austria using a numerical weather prediction (NWP)
ensemble as input. The aim of this work is to significantly
improve the NWP ALADIN-LAEF ensemble forecasts for
the 10 m wind speed (LAEFws) while maintaining low
computational costs for the analog search. For that rea-
son, several experiments using different forecast informa-
tion of the Austrian ALADIN-LAEF ensemble as input to
the analog method are thoroughly analysed. The experi-
ments use 29 TAWES sites in Austria for winter (January
2018) and summer (July 2018). Using an NWP ensemble
enables the use of more meteorological variables (predic-
tors) in more than one realization as input to the ana-
log search. In addition, using summarized information
such as the ensemble mean and/or the standard devia-
tion or every single ensemble member can provide useful
insights. In total, six experiments are conducted in this
study using a different set of input information from the
ALADIN-LAEF model as predictors to the analog-based
method. The choice of predictors from raw NWP model
includes:

• The ensemble control member of all available parame-
ters (AnEnCtrl)

• All wind-speed raw forecast ensemble member
(AnEnWs)

• The ensemble mean of all available parameters
(AnEnMu)

• The ensemble mean and spread of all parameters
(AnEnStd)

• All ensemble members of all parameters (AnEnAll)
• All available parameters corresponding to only one (dis-

tinguishable) ensemble member (AnEnMem),

where the abbreviations for analog experiments are
listed in the brackets.

In addition to the thorough LAEFws forecast improve-
ment by the analog-based method, the experiments pro-
vide a thorough insight into subtler differences among
the analog-based configurations. The additional hypothe-
sis that using the summarized measures for several mete-
orological variables, such as the mean and the standard
deviation of ensemble input, is tested and proved to be suf-
ficient to improve the raw forecast. This computationally
less demanding experiment shows no compromise on the
accuracy of the post-processing in comparison to using
all available ensemble members and variables. All experi-
ments provide the 17 members wind speed analog ensem-
ble forecast. To better understand the impact on the
raw forecasts, the two experiments using the ensemble
model output statistics post-processing approach (EMOS)
are used as a baseline. The EMOSws only uses the last
30 days as training and only the wind speed as an input,
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whereas the EMOSstd uses all available training data and
all variables including seasonal functions. The EMOSws
is slightly more successful in removing the systematic
source, the EMOSstd the dispersion source of the error.

Results show that all analog-based experiments
improve the raw model forecast. However, the most com-
putationally demanding “member by member” AnEnMem
experiment proved to be the least successful. The undesir-
able properties of the raw model, such as under-dispersion
and lower resolution, are inherited more easily for this
than for the other analog experiments. That is probably
due to the fact that the analog-search pool is smaller than
when seeking among all members independently, as is
the case in the other analog experiments. Using only one
predictor variable as input (the 17 members of LAEFws)
already improves the forecast skills and lowers the sys-
tematic error of the ensemble mean, better or comparable
to the AnEnMem experiment. If the number of available
parameters from the raw model is limited, the experiment
using only wind speed ensemble members proved to be
successful. Even better results are achieved when using
more than one predictor variable. Therefore, similar or
better results are achieved when using only the ensem-
ble control member as input (AnEnCtrl). In addition,
using more than one ensemble member within the analog
search procedure improves results even more. However,
it is shown that often there is no need to use the full
input spectrum of a raw probabilistic model, that is, all
ALADIN-LAEF members as predictors. Using basic infor-
mation of an input ensemble, such as ensemble mean and
standard deviation, improves the forecast skills almost as
successful as using the full input spectrum of a raw prob-
abilistic model as predictors, with very little significant
differences, if any. Furthermore, it is computationally less
demanding. The results confirm the hypothesis that the
summary metric (e.g. mean and standard deviation) is the
optimal way to add the aspects of error growth that can
be represented dynamically by the input ensemble model
to the flow-dependent error growth already captured by
the analog approach. Therefore, it can be suggested as the
most promising configuration among experiments tested
in this work.

All post-processing experiments in this work provide
better results than the raw input model, as expected,
reducing the under-dispersion while increasing the relia-
bility and discrimination. The best results for both analog
approach and the EMOS are achieved in July when the
raw model performs better. The raw model under-spread
is almost completely removed by all experiments. The
EMOSws approach is slightly under-dispersive, espe-
cially in January, probably due to using only the wind
speed parameter and much shorter training than other
post-processing experiments.

The accuracy of the ensemble forecast is measured
by the root-mean-square error (RMSE) for the ensemble
mean and the continuous rank probability score (CRPS).
The analog-based experiments outperform the raw
LAEFws forecast in terms of significantly better accuracy
for all forecast lead-times during both winter and summer
months. They are more skilful during night-time than
during daytime. The analog-based method is comparable
to or outperforms both EMOS experiments. The outperfor-
mance is noticed at short lead-times and during the winter
month, especially in terms of correlation. The EMOSws is
overconfident to a certain extent for the high-probability
forecasts, while EMOSstd is underconfident for
low-probability forecasts. The analog-based experiments
are almost perfectly reliable. Additionally, discrimination
is slightly better than the EMOS due to a higher hit rate.
The difference among the analog experiments is less pro-
nounced than when compared to the LAEFws and the
EMOS experiments, confirming that using basic informa-
tion of an input ensemble, such as an ensemble mean and
a standard deviation, is often sufficient.

If considered spatially, the LAEFws error follows the
climatological wind speed pattern, having higher values
at the stations prone to higher winds. The accuracy is
improved when compared to the raw model forecast, fol-
lowing a similar pattern. Additionally, even though an
improvement over raw model forecast is evident, large
differences among nearby stations are noticed in highly
complex terrain. The valley stations seem to have more
predictable weather, and the overall post-processing result
is, therefore, better than at the mountain stations with
the climatologically higher wind speeds. On the other
hand, the relative improvement to the raw model is more
pronounced at mountain stations due to the reduction of
systematic sources of error by post-processing, which is
not as present in the raw model for the valley stations.

Finally, it is very important to assess the
post-processing performance for high wind speed because
of the impact on people and property, even though the
strong wind does not occur as often as the mild wind.
For that reason, several thresholds ranging from 0.5 to
20 m⋅s−1, are used to test the skill of the post-processed
forecasts. The result shows that the LAEFws forecast
is skilful in reproducing wind speeds of the order of
3 m⋅s−1 threshold, but the same cannot be concluded at
higher or lower thresholds. The analog experiments are
able to improve the raw forecast, exhibiting significantly
higher skill than the EMOS, up to 10 m⋅s−1 wind speed
threshold. Furthermore, both AnEnStd and AnEnAll
experiments significantly improve the raw model results
for all thresholds tested in January.

The results presented in this study prove that using the
raw model ensemble mean and/or the ensemble spread for
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more than one meteorological variable as an input to the
analog method delivers suitable ensemble post-processed
forecasts, especially when computationally only lim-
ited resources are available. Moreover, this approach
sometimes even outperforms other, more computation-
ally demanding, analog-based configurations, such as the
“member-by-member” approach, or other methods such
as the EMOS.
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